- -

Driving the Crystallization of Zeolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Driving the Crystallization of Zeolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lu, Peng es_ES
dc.contributor.author Villaescusa Alonso, Luis Angel es_ES
dc.contributor.author Camblor, M. A. es_ES
dc.date.accessioned 2020-07-07T03:32:42Z
dc.date.available 2020-07-07T03:32:42Z
dc.date.issued 2018-07 es_ES
dc.identifier.issn 1527-8999 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147524
dc.description.abstract [EN] The synthesis of zeolites with new structures and/or improved properties heavily relies on trial and error efforts that are not entirely blind, as the large empirical background accumulated for the last 7 decades can be, to some extent, rationalized and purposefully used to make new materials. The so-called structure-directing factors may be combined to promote (or frustrate) the crystallization of a particular structure. This personal account opens with the concept of geoinspiration, as suggested by Prof. Ruiz-Hitzky, and its application to zeolite synthesis. We then provide a concise overview of structure-direction in the synthesis of zeolites and detail examples, both new and from the literature, on how they can be combined to drive the crystallization towards (or away from) structures displaying particular features. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (MAT2015-71117-R and AGL2015-70235-C2-R) is acknowledged. P. L. is grateful to the China Scholarship Council (CSC) for a fellowship and to the Dalian Institute of Chemical Physics for permission to leave. Thanks are also due to Wikimedia Commons and Mr. A. T. Chang for the picture of the hot springs included in the frontispiece. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof The Chemical Record es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zeolites es_ES
dc.subject Synthesis es_ES
dc.subject Structure-direction es_ES
dc.subject Geoinspiration es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.title Driving the Crystallization of Zeolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/tcr.201700092 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71117-R/ES/NUEVAS ARQUITECTURAS HIBRIDAS MEDIANTE ENSAMBLADO CONTROLADO DE NANOMATERIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lu, P.; Villaescusa Alonso, LA.; Camblor, MA. (2018). Driving the Crystallization of Zeolites. The Chemical Record. 18(7-8):713-723. https://doi.org/10.1002/tcr.201700092 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/tcr.201700092 es_ES
dc.description.upvformatpinicio 713 es_ES
dc.description.upvformatpfin 723 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 7-8 es_ES
dc.identifier.pmid 29388722 es_ES
dc.relation.pasarela S\374197 es_ES
dc.contributor.funder China Scholarship Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Porous Materials 2011 es_ES
dc.description.references Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites:  History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i es_ES
dc.description.references Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127 es_ES
dc.description.references Rees, L. V. C. (1998). Richard Maling Barrer. 16 June 1910–12 September 1996. Biographical Memoirs of Fellows of the Royal Society, 44, 37-49. doi:10.1098/rsbm.1998.0003 es_ES
dc.description.references Breck, D. W., Eversole, W. G., & Milton, R. M. (1956). NEW SYNTHETIC CRYSTALLINE ZEOLITES. Journal of the American Chemical Society, 78(10), 2338-2339. doi:10.1021/ja01591a082 es_ES
dc.description.references Rabo, J. A., & Schoonover, M. W. (2001). Early discoveries in zeolite chemistry and catalysis at Union Carbide, and follow-up in industrial catalysis. Applied Catalysis A: General, 222(1-2), 261-275. doi:10.1016/s0926-860x(01)00840-7 es_ES
dc.description.references Piccione, P. M., Laberty, C., Yang, S., Camblor, M. A., Navrotsky, A., & Davis, M. E. (2000). Thermochemistry of Pure-Silica Zeolites. The Journal of Physical Chemistry B, 104(43), 10001-10011. doi:10.1021/jp002148a es_ES
dc.description.references Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971 es_ES
dc.description.references Kerr, G. T., & Kokotailo, G. T. (1961). SODIUM ZEOLITE ZK-4, A NEW SYNTHETIC CRYSTALLINE ALUMINOSILICATE. Journal of the American Chemical Society, 83(22), 4675-4675. doi:10.1021/ja01483a052 es_ES
dc.description.references Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015 es_ES
dc.description.references Lawton, S. L., & Rohrbaugh, W. J. (1990). The Framework Topology of ZSM-18, a Novel Zeolite Containing Rings of Three (Si,Al)-O Species. Science, 247(4948), 1319-1322. doi:10.1126/science.247.4948.1319 es_ES
dc.description.references Koelmel, C. M., Li, Y. S., Freeman, C. M., Levine, S. M., Hwang, M.-J., Maple, J. R., & Newsam, J. M. (1994). Quantum and Molecular Mechanics Study of the Tris(Quaternary Ammonium) Cation Used as the Zeolite ZSM-18 Synthesis Template. The Journal of Physical Chemistry, 98(49), 12911-12918. doi:10.1021/j100100a017 es_ES
dc.description.references Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d es_ES
dc.description.references Moini, A., Schmitt, K. D., Valyocsik, E. W., & Polomski, R. F. (1994). The role of diquaternary cations as directing agents in zeolite synthesis. Zeolites, 14(7), 504-511. doi:10.1016/0144-2449(94)90182-1 es_ES
dc.description.references Struct. Bond es_ES
dc.description.references Lee, S.-H., Shin, C.-H., Yang, D.-K., Ahn, S.-D., Nam, I.-S., & Hong, S. B. (2004). Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n=3–10 as structure-directing agents. Microporous and Mesoporous Materials, 68(1-3), 97-104. doi:10.1016/j.micromeso.2003.12.011 es_ES
dc.description.references Hong, S. B., Min, H.-K., Shin, C.-H., Cox, P. A., Warrender, S. J., & Wright, P. A. (2007). Synthesis, Crystal Structure, Characterization, and Catalytic Properties of TNU-9. Journal of the American Chemical Society, 129(35), 10870-10885. doi:10.1021/ja073109g es_ES
dc.description.references Hydrothermal Chemistry of Zeolites 1982 es_ES
dc.description.references Hay, R. L., & Sheppard, R. A. (2001). Occurrence of Zeolites in Sedimentary Rocks: An Overview. Reviews in Mineralogy and Geochemistry, 45(1), 217-234. doi:10.2138/rmg.2001.45.6 es_ES
dc.description.references Camblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344 es_ES
dc.description.references Caullet, P., Paillaud, J.-L., Simon-Masseron, A., Soulard, M., & Patarin, J. (2005). The fluoride route: a strategy to crystalline porous materials. Comptes Rendus Chimie, 8(3-4), 245-266. doi:10.1016/j.crci.2005.02.001 es_ES
dc.description.references Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036 es_ES
dc.description.references Chézeau, J.-M., Delmotte, L., Guth, J.-L., & Soulard, M. (1989). High-resolution solid-state 29Si and 13C n.m.r. on highly siliceous MFI-type zeolites synthesized in nonalkaline fluoride medium. Zeolites, 9(1), 78-80. doi:10.1016/0144-2449(89)90013-4 es_ES
dc.description.references Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w es_ES
dc.description.references GUTH, J. L., KESSLER, H., CAULLET, P., HAZM, J., MERROUCHE, A., & PATARIN, J. (1993). F-: A MULTIFUNCTIONAL TOOL FOR MICROPOROUS SOLIDS a) MINERALIZING, STRUCTURE DIRECTING AND TEMPLATING EFFECTS IN THE SYNTHESIS. Proceedings from the Ninth International Zeolite Conference, 215-222. doi:10.1016/b978-1-4832-8383-8.50024-6 es_ES
dc.description.references Zicovich-Wilson, C. M., San-Román, M. L., Camblor, M. A., Pascale, F., & Durand-Niconoff, J. S. (2007). Structure, Vibrational Analysis, and Insights into Host−Guest Interactions in As-Synthesized Pure Silica ITQ-12 Zeolite by Periodic B3LYP Calculations. Journal of the American Chemical Society, 129(37), 11512-11523. doi:10.1021/ja0730361 es_ES
dc.description.references Zicovich-Wilson, C. M., Gándara, F., Monge, A., & Camblor, M. A. (2010). In SituTransformation of TON Silica Zeolite into the Less Dense ITW: Structure-Direction Overcoming Framework Instability in the Synthesis of SiO2Zeolites. Journal of the American Chemical Society, 132(10), 3461-3471. doi:10.1021/ja9094318 es_ES
dc.description.references Rojas, A., Martínez-Morales, E., Zicovich-Wilson, C. M., & Camblor, M. A. (2012). Zeolite Synthesis in Fluoride Media: Structure Direction toward ITW by Small Methylimidazolium Cations. Journal of the American Chemical Society, 134(4), 2255-2263. doi:10.1021/ja209832y es_ES
dc.description.references Rojas, A., San-Roman, M. L., Zicovich-Wilson, C. M., & Camblor, M. A. (2013). Host–Guest Stabilization of a Zeolite Strained Framework: In Situ Transformation of Zeolite MTW into the Less Dense and More Strained ITW. Chemistry of Materials, 25(5), 729-738. doi:10.1021/cm303709e es_ES
dc.description.references Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Calcination of Octadecasil:  Fluoride Removal and Symmetry of the Pure SiO2Host. Chemistry of Materials, 10(12), 3966-3973. doi:10.1021/cm9804113 es_ES
dc.description.references Camblor, M. A., Corma, A., & Valencia, S. (1996). Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects. Chemical Communications, (20), 2365. doi:10.1039/cc9960002365 es_ES
dc.description.references Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591 es_ES
dc.description.references Barrett, P. A., Camblor, M. A., Corma, A., Jones, R. H., & Villaescusa, L. A. (1997). Structure of ITQ-4, a New Pure Silica Polymorph Containing Large Pores and a Large Void Volume. Chemistry of Materials, 9(8), 1713-1715. doi:10.1021/cm970173w es_ES
dc.description.references Barrer, R. M., & Baynham, J. W. (1956). 562. The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates. Journal of the Chemical Society (Resumed), 2882. doi:10.1039/jr9560002882 es_ES
dc.description.references Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b es_ES
dc.description.references Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Synthesis and structure of ITQ-9: a new microporous SiO2 polymorph. Chemical Communications, (21), 2329-2330. doi:10.1039/a806696e es_ES
dc.description.references Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1999). ITQ-7: A New Pure Silica Polymorph with a Three-Dimensional System of Large Pore Channels. Angewandte Chemie International Edition, 38(13-14), 1997-2000. doi:10.1002/(sici)1521-3773(19990712)38:13/14<1997::aid-anie1997>3.0.co;2-u es_ES
dc.description.references Barrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440a es_ES
dc.description.references Barrett, P. A., Díaz-Cabañas, M.-J., & Camblor, M. A. (1999). Crystal Structure of Zeolite MCM-35 (MTF). Chemistry of Materials, 11(10), 2919-2927. doi:10.1021/cm9910660 es_ES
dc.description.references PhD Thesis 1997 es_ES
dc.description.references Liu, Z., Ohsuna, T., Terasaki, O., Camblor, M. A., Diaz-Cabañas, M.-J., & Hiraga, K. (2001). The First Zeolite with Three-Dimensional Intersecting Straight-Channel System of 12-Membered Rings. Journal of the American Chemical Society, 123(22), 5370-5371. doi:10.1021/ja0107778 es_ES
dc.description.references Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169 es_ES
dc.description.references Rojas, A., & Camblor, M. A. (2012). A Pure Silica Chiral Polymorph with Helical Pores. Angewandte Chemie International Edition, 51(16), 3854-3856. doi:10.1002/anie.201108753 es_ES
dc.description.references Smith, J. V., Pluth, J. J., & Andries, K. J. (1993). The framework topology of magnesiumaluminophosphate structure type 36. Zeolites, 13(3), 166-169. doi:10.1016/s0144-2449(05)80273-8 es_ES
dc.description.references Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950o es_ES
dc.description.references Moliner, M., González, J., Portilla, M. T., Willhammar, T., Rey, F., Llopis, F. J., … Corma, A. (2011). A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite. Journal of the American Chemical Society, 133(24), 9497-9505. doi:10.1021/ja2015394 es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-i es_ES
dc.description.references Lee, G. (2002). Polymethylated [4.1.1] Octanes Leading to Zeolite SSZ-50. Journal of Solid State Chemistry, 167(2), 289-298. doi:10.1016/s0022-4596(02)99549-6 es_ES
dc.description.references Shannon, M. D., Casci, J. L., Cox, P. A., & Andrews, S. J. (1991). Structure of the two-dimensional medium-pore high-silica zeolite NU-87. Nature, 353(6343), 417-420. doi:10.1038/353417a0 es_ES
dc.description.references Zones, S. I., Hwang, S.-J., Elomari, S., Ogino, I., Davis, M. E., & Burton, A. W. (2005). The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products. Comptes Rendus Chimie, 8(3-4), 267-282. doi:10.1016/j.crci.2004.12.009 es_ES
dc.description.references Briscoe, N. A., Johnson, D. W., Shannon, M. D., Kokotailo, G. T., & McCusker, L. B. (1988). The framework topology of zeolite EU-1. Zeolites, 8(1), 74-76. doi:10.1016/s0144-2449(88)80033-2 es_ES
dc.description.references PhD Thesis 1999 es_ES
dc.description.references Arranz, M., Pérez-Pariente, J., Wright, P. A., Slawin, A. M. Z., Blasco, T., Gómez-Hortigüela, L., & Corà, F. (2005). Cooperative Structure-Directing Effect of Fluorine-Containing Organic Molecules and Fluoride Anions in the Synthesis of Zeolites. Chemistry of Materials, 17(17), 4374-4385. doi:10.1021/cm050971j es_ES
dc.description.references Lobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543 es_ES
dc.description.references Patinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A., & Cox, P. A. (1999). Synthesis of a novel microporous magnesioaluminophosphate, STA-6, containing an unbound azamacrocycle †. Journal of the Chemical Society, Dalton Transactions, (22), 3909-3911. doi:10.1039/a907259d es_ES
dc.description.references Wragg, D. S., Morris, R., Burton, A. W., Zones, S. I., Ong, K., & Lee, G. (2007). The Synthesis and Structure of SSZ-73:  an All-Silica Zeolite with an Unusual Framework Topology. Chemistry of Materials, 19(16), 3924-3932. doi:10.1021/cm0705284 es_ES
dc.description.references Cantín, A., Corma, A., Leiva, S., Rey, F., Rius, J., & Valencia, S. (2005). Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 127(33), 11560-11561. doi:10.1021/ja053040h es_ES
dc.description.references Baerlocher, C., Xie, D., McCusker, L. B., Hwang, S.-J., Chan, I. Y., Ong, K., … Zones, S. I. (2008). Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Materials, 7(8), 631-635. doi:10.1038/nmat2228 es_ES
dc.description.references Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p es_ES
dc.description.references Cantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. L., & Moliner, M. (2006). Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. Journal of the American Chemical Society, 128(13), 4216-4217. doi:10.1021/ja0603599 es_ES
dc.description.references Zones, S. I., Darton, R. J., Morris, R., & Hwang, S.-J. (2005). Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis. The Journal of Physical Chemistry B, 109(1), 652-661. doi:10.1021/jp0402434 es_ES
dc.description.references Zones, S. I., Burton, A. W., Lee, G. S., & Olmstead, M. M. (2007). A Study of Piperidinium Structure-Directing Agents in the Synthesis of Silica Molecular Sieves under Fluoride-Based Conditions. Journal of the American Chemical Society, 129(29), 9066-9079. doi:10.1021/ja0709122 es_ES
dc.description.references Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022 es_ES
dc.description.references Lopes, C. W., Gómez-Hortigüela, L., Rojas, A., & Pergher, S. B. C. (2017). Fluoride-mediated synthesis of TON and MFI zeolites using 1-butyl-3-methylimidazolium as structure-directing agent. Microporous and Mesoporous Materials, 252, 29-36. doi:10.1016/j.micromeso.2017.06.017 es_ES
dc.description.references Geisinger, K. L., Gibbs, G. V., & Navrotsky, A. (1985). A molecular orbital study of bond length and angle variations in framework structures. Physics and Chemistry of Minerals, 11(6), 266-283. doi:10.1007/bf00307405 es_ES
dc.description.references Hammonds, K. D., Heine, V., & Dove, M. T. (1998). Rigid-Unit Modes and the Quantitative Determination of the Flexibility Possessed by Zeolite Frameworks. The Journal of Physical Chemistry B, 102(10), 1759-1767. doi:10.1021/jp980006z es_ES
dc.description.references Merlino, S. (1990). Lovdarite, K4Na12(Be8Si28O72) • 18 H2O, a zeolite-like mineral: structural features and OD character. European Journal of Mineralogy, 2(6), 809-818. doi:10.1127/ejm/2/6/0809 es_ES
dc.description.references De Man, A. J. M., Ueda, S., Annen, M. J., Davis, M. E., & van Santen, R. A. (1992). The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs. Zeolites, 12(7), 789-800. doi:10.1016/0144-2449(92)90051-p es_ES
dc.description.references Bnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0 es_ES
dc.description.references Annen, M. J., Davis, M. E., Higgins, J. B., & Schlenker, J. L. (1991). VPI-7: the first zincosilicate molecular sieve containing three-membered T-atom rings. Journal of the Chemical Society, Chemical Communications, (17), 1175. doi:10.1039/c39910001175 es_ES
dc.description.references McCusker, L. B., Grosse-Kunstleve, R. W., Baerlocher, C., Yoshikawa, M., & Davis, M. E. (1996). Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Materials, 6(5-6), 295-309. doi:10.1016/0927-6513(96)00015-6 es_ES
dc.description.references Röhrig, C., & Gies, H. (1995). A New Zincosilicate Zeolite with Nine-Ring Channels. Angewandte Chemie International Edition in English, 34(1), 63-65. doi:10.1002/anie.199500631 es_ES
dc.description.references Ro¨hrig, C., Gies, H., & Marler, B. (1994). Rietveld refinement of the crystal structure of the synthetic porous zincosilicate VPI-7. Zeolites, 14(7), 498-503. doi:10.1016/0144-2449(94)90181-3 es_ES
dc.description.references Camblor, M. A., & Davis, M. E. (1994). 29Si MAS NMR Spectroscopy of Tectozincosilicates. The Journal of Physical Chemistry, 98(50), 13151-13156. doi:10.1021/j100101a010 es_ES
dc.description.references Petersen, O. V., Giester, G., Brandstatter, F., & Niedermayr, G. (2002). NABESITE, Na2BeSi4O10{middle dot}4H2O, A NEW MINERAL SPECIES FROM THE ILIMAUSSAQ ALKALINE COMPLEX, SOUTH GREENLAND. The Canadian Mineralogist, 40(1), 173-181. doi:10.2113/gscanmin.40.1.173 es_ES
dc.description.references Cheetham, A. K., Fjellvg, H., Gier, T. E., Kongshaug, K. O., Lillerud, K. P., & Stucky, G. D. (2001). 05-O-05-Very open microporous materials: from concept to reality. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 158. doi:10.1016/s0167-2991(01)81268-4 es_ES
dc.description.references Walter, F. (1992). Weinebeneite, CaBe3(PO4)2(OH)2 ∙ 4H2O, a new mineral species: mineral data and crystal structure. European Journal of Mineralogy, 4(6), 1275-1284. doi:10.1127/ejm/4/6/1275 es_ES
dc.description.references Littlefield, B. T. R., & Weller, M. T. (2012). Lightweight nanoporous metal hydroxide-rich zeotypes. Nature Communications, 3(1). doi:10.1038/ncomms2129 es_ES
dc.description.references Sedlmaier, S. J., Döblinger, M., Oeckler, O., Weber, J., Schmedt auf der Günne, J., & Schnick, W. (2011). Unprecedented Zeolite-Like Framework Topology Constructed from Cages with 3-Rings in a Barium Oxonitridophosphate. Journal of the American Chemical Society, 133(31), 12069-12078. doi:10.1021/ja202159e es_ES
dc.description.references Park, S. H., Daniels, P., & Gies, H. (2000). RUB-23: a new microporous lithosilicate containing spiro-5 building units. Microporous and Mesoporous Materials, 37(1-2), 129-143. doi:10.1016/s1387-1811(99)00260-7 es_ES
dc.description.references Conradsson, T., Dadachov, M. ., & Zou, X. . (2000). Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous and Mesoporous Materials, 41(1-3), 183-191. doi:10.1016/s1387-1811(00)00288-2 es_ES
dc.description.references Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107 es_ES
dc.description.references Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506 es_ES
dc.description.references Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b es_ES
dc.description.references Sartbaeva, A., Wells, S. A., Treacy, M. M. J., & Thorpe, M. F. (2006). The flexibility window in zeolites. Nature Materials, 5(12), 962-965. doi:10.1038/nmat1784 es_ES
dc.description.references Medina, M. E., Platero-Prats, A. E., Snejko, N., Rojas, A., Monge, A., Gándara, F., … Camblor, M. A. (2011). Towards Inorganic Porous Materials by Design: Looking for New Architectures. Advanced Materials, 23(44), 5283-5292. doi:10.1002/adma.201101852 es_ES
dc.description.references Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b es_ES
dc.description.references Sastre, G., & Corma, A. (2010). Predicting Structural Feasibility of Silica and Germania Zeolites. The Journal of Physical Chemistry C, 114(3), 1667-1673. doi:10.1021/jp909348s es_ES
dc.description.references Rojas, A., Gómez-Hortigüela, L., & Camblor, M. A. (2013). Benzylimidazolium cations as zeolite structure-directing agents. Differences in performance brought about by a small change in size. Dalton Trans., 42(7), 2562-2571. doi:10.1039/c2dt32230g es_ES
dc.description.references Boal, B. W., Deem, M. W., Xie, D., Kang, J. H., Davis, M. E., & Zones, S. I. (2016). Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13. Chemistry of Materials, 28(7), 2158-2164. doi:10.1021/acs.chemmater.6b00031 es_ES
dc.description.references Kang, J. H., Xie, D., Zones, S. I., Smeets, S., McCusker, L. B., & Davis, M. E. (2016). Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. Chemistry of Materials, 28(17), 6250-6259. doi:10.1021/acs.chemmater.6b02468 es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o es_ES
dc.description.references Yu, J., & Xu, R. (2003). Rich Structure Chemistry in the Aluminophosphate Family. Accounts of Chemical Research, 36(7), 481-490. doi:10.1021/ar0201557 es_ES
dc.description.references Lee, J. H., Kim, E. J., López-Arbeloa, F., Hong, S. B., & Camblor, M. A. (2016). Microporous aluminophosphates synthesized with 1,2,3-trimethylimidazolium and fluoride. Dalton Transactions, 45(18), 7616-7626. doi:10.1039/c6dt00734a es_ES
dc.description.references Jo, D., Lim, J. B., Ryu, T., Nam, I.-S., Camblor, M. A., & Hong, S. B. (2015). Unseeded hydroxide-mediated synthesis and CO2 adsorption properties of an aluminosilicate zeolite with the RTH topology. Journal of Materials Chemistry A, 3(38), 19322-19329. doi:10.1039/c5ta03559g es_ES
dc.description.references Brand, S. K., Schmidt, J. E., Deem, M. W., Daeyaert, F., Ma, Y., Terasaki, O., … Davis, M. E. (2017). Enantiomerically enriched, polycrystalline molecular sieves. Proceedings of the National Academy of Sciences, 114(20), 5101-5106. doi:10.1073/pnas.1704638114 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem