Porous Materials 2011
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127
[+]
Porous Materials 2011
Cundy, C. S., & Cox, P. A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chemical Reviews, 103(3), 663-702. doi:10.1021/cr020060i
Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127
Rees, L. V. C. (1998). Richard Maling Barrer. 16 June 1910–12 September 1996. Biographical Memoirs of Fellows of the Royal Society, 44, 37-49. doi:10.1098/rsbm.1998.0003
Breck, D. W., Eversole, W. G., & Milton, R. M. (1956). NEW SYNTHETIC CRYSTALLINE ZEOLITES. Journal of the American Chemical Society, 78(10), 2338-2339. doi:10.1021/ja01591a082
Rabo, J. A., & Schoonover, M. W. (2001). Early discoveries in zeolite chemistry and catalysis at Union Carbide, and follow-up in industrial catalysis. Applied Catalysis A: General, 222(1-2), 261-275. doi:10.1016/s0926-860x(01)00840-7
Piccione, P. M., Laberty, C., Yang, S., Camblor, M. A., Navrotsky, A., & Davis, M. E. (2000). Thermochemistry of Pure-Silica Zeolites. The Journal of Physical Chemistry B, 104(43), 10001-10011. doi:10.1021/jp002148a
Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971
Kerr, G. T., & Kokotailo, G. T. (1961). SODIUM ZEOLITE ZK-4, A NEW SYNTHETIC CRYSTALLINE ALUMINOSILICATE. Journal of the American Chemical Society, 83(22), 4675-4675. doi:10.1021/ja01483a052
Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. II. The Synthesis and Properties of Zeolite ZK-4. Inorganic Chemistry, 5(9), 1537-1539. doi:10.1021/ic50043a015
Lawton, S. L., & Rohrbaugh, W. J. (1990). The Framework Topology of ZSM-18, a Novel Zeolite Containing Rings of Three (Si,Al)-O Species. Science, 247(4948), 1319-1322. doi:10.1126/science.247.4948.1319
Koelmel, C. M., Li, Y. S., Freeman, C. M., Levine, S. M., Hwang, M.-J., Maple, J. R., & Newsam, J. M. (1994). Quantum and Molecular Mechanics Study of the Tris(Quaternary Ammonium) Cation Used as the Zeolite ZSM-18 Synthesis Template. The Journal of Physical Chemistry, 98(49), 12911-12918. doi:10.1021/j100100a017
Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-d
Moini, A., Schmitt, K. D., Valyocsik, E. W., & Polomski, R. F. (1994). The role of diquaternary cations as directing agents in zeolite synthesis. Zeolites, 14(7), 504-511. doi:10.1016/0144-2449(94)90182-1
Struct. Bond
Lee, S.-H., Shin, C.-H., Yang, D.-K., Ahn, S.-D., Nam, I.-S., & Hong, S. B. (2004). Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n=3–10 as structure-directing agents. Microporous and Mesoporous Materials, 68(1-3), 97-104. doi:10.1016/j.micromeso.2003.12.011
Hong, S. B., Min, H.-K., Shin, C.-H., Cox, P. A., Warrender, S. J., & Wright, P. A. (2007). Synthesis, Crystal Structure, Characterization, and Catalytic Properties of TNU-9. Journal of the American Chemical Society, 129(35), 10870-10885. doi:10.1021/ja073109g
Hydrothermal Chemistry of Zeolites 1982
Hay, R. L., & Sheppard, R. A. (2001). Occurrence of Zeolites in Sedimentary Rocks: An Overview. Reviews in Mineralogy and Geochemistry, 45(1), 217-234. doi:10.2138/rmg.2001.45.6
Camblor, M. A., Villaescusa, L. A., & Díaz‐Cabañas, M. J. (1999). Topics in Catalysis, 9(1/2), 59-76. doi:10.1023/a:1019154304344
Caullet, P., Paillaud, J.-L., Simon-Masseron, A., Soulard, M., & Patarin, J. (2005). The fluoride route: a strategy to crystalline porous materials. Comptes Rendus Chimie, 8(3-4), 245-266. doi:10.1016/j.crci.2005.02.001
Koller, H., Lobo, R. F., Burkett, S. L., & Davis, M. E. (1995). SiO-.cntdot. .cntdot. .cntdot.HOSi Hydrogen Bonds in As-Synthesized High-Silica Zeolites. The Journal of Physical Chemistry, 99(33), 12588-12596. doi:10.1021/j100033a036
Chézeau, J.-M., Delmotte, L., Guth, J.-L., & Soulard, M. (1989). High-resolution solid-state 29Si and 13C n.m.r. on highly siliceous MFI-type zeolites synthesized in nonalkaline fluoride medium. Zeolites, 9(1), 78-80. doi:10.1016/0144-2449(89)90013-4
Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w
GUTH, J. L., KESSLER, H., CAULLET, P., HAZM, J., MERROUCHE, A., & PATARIN, J. (1993). F-: A MULTIFUNCTIONAL TOOL FOR MICROPOROUS SOLIDS a) MINERALIZING, STRUCTURE DIRECTING AND TEMPLATING EFFECTS IN THE SYNTHESIS. Proceedings from the Ninth International Zeolite Conference, 215-222. doi:10.1016/b978-1-4832-8383-8.50024-6
Zicovich-Wilson, C. M., San-Román, M. L., Camblor, M. A., Pascale, F., & Durand-Niconoff, J. S. (2007). Structure, Vibrational Analysis, and Insights into Host−Guest Interactions in As-Synthesized Pure Silica ITQ-12 Zeolite by Periodic B3LYP Calculations. Journal of the American Chemical Society, 129(37), 11512-11523. doi:10.1021/ja0730361
Zicovich-Wilson, C. M., Gándara, F., Monge, A., & Camblor, M. A. (2010). In SituTransformation of TON Silica Zeolite into the Less Dense ITW: Structure-Direction Overcoming Framework Instability in the Synthesis of SiO2Zeolites. Journal of the American Chemical Society, 132(10), 3461-3471. doi:10.1021/ja9094318
Rojas, A., Martínez-Morales, E., Zicovich-Wilson, C. M., & Camblor, M. A. (2012). Zeolite Synthesis in Fluoride Media: Structure Direction toward ITW by Small Methylimidazolium Cations. Journal of the American Chemical Society, 134(4), 2255-2263. doi:10.1021/ja209832y
Rojas, A., San-Roman, M. L., Zicovich-Wilson, C. M., & Camblor, M. A. (2013). Host–Guest Stabilization of a Zeolite Strained Framework: In Situ Transformation of Zeolite MTW into the Less Dense and More Strained ITW. Chemistry of Materials, 25(5), 729-738. doi:10.1021/cm303709e
Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Calcination of Octadecasil: Fluoride Removal and Symmetry of the Pure SiO2Host. Chemistry of Materials, 10(12), 3966-3973. doi:10.1021/cm9804113
Camblor, M. A., Corma, A., & Valencia, S. (1996). Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects. Chemical Communications, (20), 2365. doi:10.1039/cc9960002365
Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591
Barrett, P. A., Camblor, M. A., Corma, A., Jones, R. H., & Villaescusa, L. A. (1997). Structure of ITQ-4, a New Pure Silica Polymorph Containing Large Pores and a Large Void Volume. Chemistry of Materials, 9(8), 1713-1715. doi:10.1021/cm970173w
Barrer, R. M., & Baynham, J. W. (1956). 562. The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates. Journal of the Chemical Society (Resumed), 2882. doi:10.1039/jr9560002882
Díaz-Cabañas, M.-J., & Barrett, P. A. (1998). Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density. Chemical Communications, (17), 1881-1882. doi:10.1039/a804800b
Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1998). Synthesis and structure of ITQ-9: a new microporous SiO2 polymorph. Chemical Communications, (21), 2329-2330. doi:10.1039/a806696e
Villaescusa, L. A., Barrett, P. A., & Camblor, M. A. (1999). ITQ-7: A New Pure Silica Polymorph with a Three-Dimensional System of Large Pore Channels. Angewandte Chemie International Edition, 38(13-14), 1997-2000. doi:10.1002/(sici)1521-3773(19990712)38:13/14<1997::aid-anie1997>3.0.co;2-u
Barrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440a
Barrett, P. A., Díaz-Cabañas, M.-J., & Camblor, M. A. (1999). Crystal Structure of Zeolite MCM-35 (MTF). Chemistry of Materials, 11(10), 2919-2927. doi:10.1021/cm9910660
PhD Thesis 1997
Liu, Z., Ohsuna, T., Terasaki, O., Camblor, M. A., Diaz-Cabañas, M.-J., & Hiraga, K. (2001). The First Zeolite with Three-Dimensional Intersecting Straight-Channel System of 12-Membered Rings. Journal of the American Chemical Society, 123(22), 5370-5371. doi:10.1021/ja0107778
Tang, L., Shi, L., Bonneau, C., Sun, J., Yue, H., Ojuva, A., … Zou, X. (2008). A zeolite family with chiral and achiral structures built from the same building layer. Nature Materials, 7(5), 381-385. doi:10.1038/nmat2169
Rojas, A., & Camblor, M. A. (2012). A Pure Silica Chiral Polymorph with Helical Pores. Angewandte Chemie International Edition, 51(16), 3854-3856. doi:10.1002/anie.201108753
Smith, J. V., Pluth, J. J., & Andries, K. J. (1993). The framework topology of magnesiumaluminophosphate structure type 36. Zeolites, 13(3), 166-169. doi:10.1016/s0144-2449(05)80273-8
Burton, A., Darton, R. J., Davis, M. E., Hwang, S.-J., Morris, R. E., Ogino, I., & Zones, S. I. (2006). Structure-Directing Agent Location and Non-Centrosymmetric Structure of Fluoride-Containing Zeolite SSZ-55. The Journal of Physical Chemistry B, 110(11), 5273-5278. doi:10.1021/jp054950o
Moliner, M., González, J., Portilla, M. T., Willhammar, T., Rey, F., Llopis, F. J., … Corma, A. (2011). A New Aluminosilicate Molecular Sieve with a System of Pores between Those of ZSM-5 and Beta Zeolite. Journal of the American Chemical Society, 133(24), 9497-9505. doi:10.1021/ja2015394
Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909
Vortmann, S., Marler, B., Gies, H., & Daniels, P. (1995). Synthesis and crystal structure of the new borosilicate zeolite RUB-13. Microporous Materials, 4(2-3), 111-121. doi:10.1016/0927-6513(94)00090-i
Lee, G. (2002). Polymethylated [4.1.1] Octanes Leading to Zeolite SSZ-50. Journal of Solid State Chemistry, 167(2), 289-298. doi:10.1016/s0022-4596(02)99549-6
Shannon, M. D., Casci, J. L., Cox, P. A., & Andrews, S. J. (1991). Structure of the two-dimensional medium-pore high-silica zeolite NU-87. Nature, 353(6343), 417-420. doi:10.1038/353417a0
Zones, S. I., Hwang, S.-J., Elomari, S., Ogino, I., Davis, M. E., & Burton, A. W. (2005). The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products. Comptes Rendus Chimie, 8(3-4), 267-282. doi:10.1016/j.crci.2004.12.009
Briscoe, N. A., Johnson, D. W., Shannon, M. D., Kokotailo, G. T., & McCusker, L. B. (1988). The framework topology of zeolite EU-1. Zeolites, 8(1), 74-76. doi:10.1016/s0144-2449(88)80033-2
PhD Thesis 1999
Arranz, M., Pérez-Pariente, J., Wright, P. A., Slawin, A. M. Z., Blasco, T., Gómez-Hortigüela, L., & Corà, F. (2005). Cooperative Structure-Directing Effect of Fluorine-Containing Organic Molecules and Fluoride Anions in the Synthesis of Zeolites. Chemistry of Materials, 17(17), 4374-4385. doi:10.1021/cm050971j
Lobo, R. F., Pan, M., Chan, I., Li, H.-X., Medrud, R. C., Zones, S. I., … Davis, M. E. (1993). SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 262(5139), 1543-1546. doi:10.1126/science.262.5139.1543
Patinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A., & Cox, P. A. (1999). Synthesis of a novel microporous magnesioaluminophosphate, STA-6, containing an unbound azamacrocycle †. Journal of the Chemical Society, Dalton Transactions, (22), 3909-3911. doi:10.1039/a907259d
Wragg, D. S., Morris, R., Burton, A. W., Zones, S. I., Ong, K., & Lee, G. (2007). The Synthesis and Structure of SSZ-73: an All-Silica Zeolite with an Unusual Framework Topology. Chemistry of Materials, 19(16), 3924-3932. doi:10.1021/cm0705284
Cantín, A., Corma, A., Leiva, S., Rey, F., Rius, J., & Valencia, S. (2005). Synthesis and Structure of the Bidimensional Zeolite ITQ-32 with Small and Large Pores. Journal of the American Chemical Society, 127(33), 11560-11561. doi:10.1021/ja053040h
Baerlocher, C., Xie, D., McCusker, L. B., Hwang, S.-J., Chan, I. Y., Ong, K., … Zones, S. I. (2008). Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Materials, 7(8), 631-635. doi:10.1038/nmat2228
Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p
Cantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. L., & Moliner, M. (2006). Rational Design and HT Techniques Allow the Synthesis of New IWR Zeolite Polymorphs. Journal of the American Chemical Society, 128(13), 4216-4217. doi:10.1021/ja0603599
Zones, S. I., Darton, R. J., Morris, R., & Hwang, S.-J. (2005). Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis. The Journal of Physical Chemistry B, 109(1), 652-661. doi:10.1021/jp0402434
Zones, S. I., Burton, A. W., Lee, G. S., & Olmstead, M. M. (2007). A Study of Piperidinium Structure-Directing Agents in the Synthesis of Silica Molecular Sieves under Fluoride-Based Conditions. Journal of the American Chemical Society, 129(29), 9066-9079. doi:10.1021/ja0709122
Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022
Lopes, C. W., Gómez-Hortigüela, L., Rojas, A., & Pergher, S. B. C. (2017). Fluoride-mediated synthesis of TON and MFI zeolites using 1-butyl-3-methylimidazolium as structure-directing agent. Microporous and Mesoporous Materials, 252, 29-36. doi:10.1016/j.micromeso.2017.06.017
Geisinger, K. L., Gibbs, G. V., & Navrotsky, A. (1985). A molecular orbital study of bond length and angle variations in framework structures. Physics and Chemistry of Minerals, 11(6), 266-283. doi:10.1007/bf00307405
Hammonds, K. D., Heine, V., & Dove, M. T. (1998). Rigid-Unit Modes and the Quantitative Determination of the Flexibility Possessed by Zeolite Frameworks. The Journal of Physical Chemistry B, 102(10), 1759-1767. doi:10.1021/jp980006z
Merlino, S. (1990). Lovdarite, K4Na12(Be8Si28O72) • 18 H2O, a zeolite-like mineral: structural features and OD character. European Journal of Mineralogy, 2(6), 809-818. doi:10.1127/ejm/2/6/0809
De Man, A. J. M., Ueda, S., Annen, M. J., Davis, M. E., & van Santen, R. A. (1992). The stability and vibrational spectra of three-ring containing zeolitic silica polymorphs. Zeolites, 12(7), 789-800. doi:10.1016/0144-2449(92)90051-p
Bnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0
Annen, M. J., Davis, M. E., Higgins, J. B., & Schlenker, J. L. (1991). VPI-7: the first zincosilicate molecular sieve containing three-membered T-atom rings. Journal of the Chemical Society, Chemical Communications, (17), 1175. doi:10.1039/c39910001175
McCusker, L. B., Grosse-Kunstleve, R. W., Baerlocher, C., Yoshikawa, M., & Davis, M. E. (1996). Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Materials, 6(5-6), 295-309. doi:10.1016/0927-6513(96)00015-6
Röhrig, C., & Gies, H. (1995). A New Zincosilicate Zeolite with Nine-Ring Channels. Angewandte Chemie International Edition in English, 34(1), 63-65. doi:10.1002/anie.199500631
Ro¨hrig, C., Gies, H., & Marler, B. (1994). Rietveld refinement of the crystal structure of the synthetic porous zincosilicate VPI-7. Zeolites, 14(7), 498-503. doi:10.1016/0144-2449(94)90181-3
Camblor, M. A., & Davis, M. E. (1994). 29Si MAS NMR Spectroscopy of Tectozincosilicates. The Journal of Physical Chemistry, 98(50), 13151-13156. doi:10.1021/j100101a010
Petersen, O. V., Giester, G., Brandstatter, F., & Niedermayr, G. (2002). NABESITE, Na2BeSi4O10{middle dot}4H2O, A NEW MINERAL SPECIES FROM THE ILIMAUSSAQ ALKALINE COMPLEX, SOUTH GREENLAND. The Canadian Mineralogist, 40(1), 173-181. doi:10.2113/gscanmin.40.1.173
Cheetham, A. K., Fjellvg, H., Gier, T. E., Kongshaug, K. O., Lillerud, K. P., & Stucky, G. D. (2001). 05-O-05-Very open microporous materials: from concept to reality. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 158. doi:10.1016/s0167-2991(01)81268-4
Walter, F. (1992). Weinebeneite, CaBe3(PO4)2(OH)2 ∙ 4H2O, a new mineral species: mineral data and crystal structure. European Journal of Mineralogy, 4(6), 1275-1284. doi:10.1127/ejm/4/6/1275
Littlefield, B. T. R., & Weller, M. T. (2012). Lightweight nanoporous metal hydroxide-rich zeotypes. Nature Communications, 3(1). doi:10.1038/ncomms2129
Sedlmaier, S. J., Döblinger, M., Oeckler, O., Weber, J., Schmedt auf der Günne, J., & Schnick, W. (2011). Unprecedented Zeolite-Like Framework Topology Constructed from Cages with 3-Rings in a Barium Oxonitridophosphate. Journal of the American Chemical Society, 133(31), 12069-12078. doi:10.1021/ja202159e
Park, S. H., Daniels, P., & Gies, H. (2000). RUB-23: a new microporous lithosilicate containing spiro-5 building units. Microporous and Mesoporous Materials, 37(1-2), 129-143. doi:10.1016/s1387-1811(99)00260-7
Conradsson, T., Dadachov, M. ., & Zou, X. . (2000). Synthesis and structure of (Me3N)6[Ge32O64](H2O)4.5, a thermally stable novel zeotype with 3D interconnected 12-ring channels. Microporous and Mesoporous Materials, 41(1-3), 183-191. doi:10.1016/s1387-1811(00)00288-2
Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107
Jiang, J., Jorda, J. L., Diaz-Cabanas, M. J., Yu, J., & Corma, A. (2010). The Synthesis of an Extra-Large-Pore Zeolite with Double Three-Ring Building Units and a Low Framework Density. Angewandte Chemie International Edition, 49(29), 4986-4988. doi:10.1002/anie.201001506
Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b
Sartbaeva, A., Wells, S. A., Treacy, M. M. J., & Thorpe, M. F. (2006). The flexibility window in zeolites. Nature Materials, 5(12), 962-965. doi:10.1038/nmat1784
Medina, M. E., Platero-Prats, A. E., Snejko, N., Rojas, A., Monge, A., Gándara, F., … Camblor, M. A. (2011). Towards Inorganic Porous Materials by Design: Looking for New Architectures. Advanced Materials, 23(44), 5283-5292. doi:10.1002/adma.201101852
Kapko, V., Dawson, C., Treacy, M. M. J., & Thorpe, M. F. (2010). Flexibility of ideal zeolite frameworks. Physical Chemistry Chemical Physics, 12(30), 8531. doi:10.1039/c003977b
Sastre, G., & Corma, A. (2010). Predicting Structural Feasibility of Silica and Germania Zeolites. The Journal of Physical Chemistry C, 114(3), 1667-1673. doi:10.1021/jp909348s
Rojas, A., Gómez-Hortigüela, L., & Camblor, M. A. (2013). Benzylimidazolium cations as zeolite structure-directing agents. Differences in performance brought about by a small change in size. Dalton Trans., 42(7), 2562-2571. doi:10.1039/c2dt32230g
Boal, B. W., Deem, M. W., Xie, D., Kang, J. H., Davis, M. E., & Zones, S. I. (2016). Synthesis of Germanosilicate Molecular Sieves from Mono- and Di-Quaternary Ammonium OSDAs Constructed from Benzyl Imidazolium Derivatives: Stabilization of Large Micropore Volumes Including New Molecular Sieve CIT-13. Chemistry of Materials, 28(7), 2158-2164. doi:10.1021/acs.chemmater.6b00031
Kang, J. H., Xie, D., Zones, S. I., Smeets, S., McCusker, L. B., & Davis, M. E. (2016). Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. Chemistry of Materials, 28(17), 6250-6259. doi:10.1021/acs.chemmater.6b02468
Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238
Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents: Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o
Yu, J., & Xu, R. (2003). Rich Structure Chemistry in the Aluminophosphate Family. Accounts of Chemical Research, 36(7), 481-490. doi:10.1021/ar0201557
Lee, J. H., Kim, E. J., López-Arbeloa, F., Hong, S. B., & Camblor, M. A. (2016). Microporous aluminophosphates synthesized with 1,2,3-trimethylimidazolium and fluoride. Dalton Transactions, 45(18), 7616-7626. doi:10.1039/c6dt00734a
Jo, D., Lim, J. B., Ryu, T., Nam, I.-S., Camblor, M. A., & Hong, S. B. (2015). Unseeded hydroxide-mediated synthesis and CO2 adsorption properties of an aluminosilicate zeolite with the RTH topology. Journal of Materials Chemistry A, 3(38), 19322-19329. doi:10.1039/c5ta03559g
Brand, S. K., Schmidt, J. E., Deem, M. W., Daeyaert, F., Ma, Y., Terasaki, O., … Davis, M. E. (2017). Enantiomerically enriched, polycrystalline molecular sieves. Proceedings of the National Academy of Sciences, 114(20), 5101-5106. doi:10.1073/pnas.1704638114
[-]