- -

Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study

Show full item record

Godoy, EJ.; Lozano, M.; García-Fernández, I.; Ferrer-Albero, A.; Macleod, R.; Saiz, J.; Sebastián, R. (2018). Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study. Frontiers in Physiology. 9:1-18. https://doi.org/10.3389/fphys.2018.00404

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147528

Files in this item

Item Metadata

Title: Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study
Author: Godoy, Eduardo J. Lozano, Miguel García-Fernández, Ignacio Ferrer-Albero, Ana MacLeod, Rob Saiz, Javier Sebastián, Rafael
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Issued date:
Abstract:
[EN] Introduction: Focal atrial tachycardia is commonly treated by radio frequency ablation with an acceptable long-term success. Although the location of ectopic foci tends to appear in specific hot-spots, they can be ...[+]
Subjects: Atrial tachycardia , Body surface potential map , Structural remodeling , Ectopic focus location , Optimal electrode location , Machine-learning
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Physiology. (issn: 1664-042X )
DOI: 10.3389/fphys.2018.00404
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fphys.2018.00404
Project ID:
MICINN/TIN2014-59932-JIN
info:eu-repo/grantAgreement/MINECO//DPI2015-69125-R/ES/SIMULACION COMPUTACIONAL PARA LA PREDICCION PERSONALIZADA DE LOS EFECTOS DE LOS FARMACOS SOBRE LA ACTIVIDAD CARDIACA/
Thanks:
This work was partially supported by Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) DPI2015-69125-R and TIN2014-59932-JIN (MINECO/FEDER, UE).
Type: Artículo

References

Boyle, P. M., Zahid, S., & Trayanova, N. A. (2016). Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace, 18(suppl_4), iv136-iv145. doi:10.1093/europace/euw358

Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301

Daccarett, M., Badger, T. J., Akoum, N., Burgon, N. S., Mahnkopf, C., Vergara, G., … Marrouche, N. F. (2011). Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 57(7), 831-838. doi:10.1016/j.jacc.2010.09.049 [+]
Boyle, P. M., Zahid, S., & Trayanova, N. A. (2016). Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace, 18(suppl_4), iv136-iv145. doi:10.1093/europace/euw358

Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301

Daccarett, M., Badger, T. J., Akoum, N., Burgon, N. S., Mahnkopf, C., Vergara, G., … Marrouche, N. F. (2011). Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 57(7), 831-838. doi:10.1016/j.jacc.2010.09.049

Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6

Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573

Ferrer-Albero, A., Godoy, E. J., Lozano, M., Martínez-Mateu, L., Atienza, F., Saiz, J., & Sebastian, R. (2017). Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps. PLOS ONE, 12(7), e0181263. doi:10.1371/journal.pone.0181263

Geselowitz, D. B., & Miller, W. T. (1983). A bidomain model for anisotropic cardiac muscle. Annals of Biomedical Engineering, 11(3-4), 191-206. doi:10.1007/bf02363286

Giffard-Roisin, S., Jackson, T., Fovargue, L., Lee, J., Delingette, H., Razavi, R., … Sermesant, M. (2017). Noninvasive Personalization of a Cardiac Electrophysiology Model From Body Surface Potential Mapping. IEEE Transactions on Biomedical Engineering, 64(9), 2206-2218. doi:10.1109/tbme.2016.2629849

Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370

Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011

Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2

HOFFMANN, E., REITHMANN, C., NIMMERMANN, P., ELSER, F., DORWARTH, U., REMP, T., & STEINBECK, G. (2002). Clinical Experience with Electroanatomic Mapping of Ectopic Atrial Tachycardia. Pacing and Clinical Electrophysiology, 25(1), 49-56. doi:10.1046/j.1460-9592.2002.00049.x

Jacquemet, V. (2012). An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations. Computer Methods and Programs in Biomedicine, 108(2), 548-558. doi:10.1016/j.cmpb.2011.05.003

Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364

Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485

Kistler, P. M., Fynn, S. P., Haqqani, H., Stevenson, I. H., Vohra, J. K., Morton, J. B., … Kalman, J. M. (2005). Focal Atrial Tachycardia From the Ostium of the Coronary Sinus. Journal of the American College of Cardiology, 45(9), 1488-1493. doi:10.1016/j.jacc.2005.01.042

Kistler, P. M., Roberts-Thomson, K. C., Haqqani, H. M., Fynn, S. P., Singarayar, S., Vohra, J. K., … Kalman, J. M. (2006). P-Wave Morphology in Focal Atrial Tachycardia. Journal of the American College of Cardiology, 48(5), 1010-1017. doi:10.1016/j.jacc.2006.03.058

Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Hussin, A., Vohra, J. K., … Kalman, J. M. (2003). Electrophysiological and Electrocardiographic Characteristics of Focal Atrial Tachycardia Originating From the Pulmonary Veins. Circulation, 108(16), 1968-1975. doi:10.1161/01.cir.0000095269.36984.75

Kistler, P. M., Sanders, P., Hussin, A., Morton, J. B., Vohra, J. K., Sparks, P. B., & Kalman, J. M. (2003). Focal atrial tachycardia arising from the mitral annulus. Journal of the American College of Cardiology, 41(12), 2212-2219. doi:10.1016/s0735-1097(03)00484-4

Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410

MacLeod, R. S., Kholmovski, E., DiBella, E. V. R., Oakes, R. S., Blauer, J. E., Fish, E., … Marrouche, N. F. (2008). Integration of MRI in evaluation and ablation of atrial fibrillation. 2008 Computers in Cardiology. doi:10.1109/cic.2008.4748981

Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054

Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474

MORTON, J. B., SANDERS, P., DAS, A., VOHRA, J. K., SPARKS, P. B., & KALMAN, J. M. (2001). Focal Atrial Tachycardia Arising from the Tricuspid Annulus: Electrophysiologic and Electrocardiographic Characteristics. Journal of Cardiovascular Electrophysiology, 12(6), 653-659. doi:10.1046/j.1540-8167.2001.00653.x

Niederer, S. A., Kerfoot, E., Benson, A. P., Bernabeu, M. O., Bernus, O., Bradley, C., … Smith, N. P. (2011). Verification of cardiac tissue electrophysiology simulators using an N -version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1954), 4331-4351. doi:10.1098/rsta.2011.0139

Oakes, R. S., Badger, T. J., Kholmovski, E. G., Akoum, N., Burgon, N. S., Fish, E. N., … Marrouche, N. F. (2009). Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients With Atrial Fibrillation. Circulation, 119(13), 1758-1767. doi:10.1161/circulationaha.108.811877

Ramanathan, C., Jia, P., Ghanem, R., Calvetti, D., & Rudy, Y. (2003). Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method. Annals of Biomedical Engineering, 31(8), 981-994. doi:10.1114/1.1588655

Santangeli, P., & Marchlinski, F. E. (2017). Techniques for the provocation, localization, and ablation of non–pulmonary vein triggers for atrial fibrillation. Heart Rhythm, 14(7), 1087-1096. doi:10.1016/j.hrthm.2017.02.030

Santangeli, P., Zado, E. S., Hutchinson, M. D., Riley, M. P., Lin, D., Frankel, D. S., … Marchlinski, F. E. (2016). Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm, 13(2), 374-382. doi:10.1016/j.hrthm.2015.10.023

Saoudi, N. (2001). A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases. A Statement from a Joint Expert Group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 22(14), 1162-1182. doi:10.1053/euhj.2001.2658

Shah, A. J., Hocini, M., Pascale, P., Roten, L., Komatsu, Y., … Daly, M. (2013). Body Surface Electrocardiographic Mapping for Non-invasive Identification of Arrhythmic Sources. Arrhythmia & Electrophysiology Review, 2(1), 16. doi:10.15420/aer.2013.2.1.16

SippensGroenewegen, A., Natale, A., Marrouche, N. F., Bash, D., & Cheng, J. (2004). Potential role of body surface ECG mapping for localization of atrial fibrillation trigger sites. Journal of Electrocardiology, 37, 47-52. doi:10.1016/j.jelectrocard.2004.08.017

Sippensgroenewegen, A., Roithinger, F. X., Peeters, H. A. ., Linnenbank, A. C., van Hemel, N. M., Steiner, P. R., & Lesh, M. D. (1998). Body surface mapping of atrial arrhythmias: Atlas of paced p wave integral maps to localize the focal origin of right atrial tachycardia. Journal of Electrocardiology, 31, 85-91. doi:10.1016/s0022-0736(98)90298-9

SPACH, M. S., & BOINEAU, J. P. (1997). Microfibrosis Produces Electrical Load Variations Due to Loss of Side-to-Side Cell Connections; A Major Mechanism of Structural Heart Disease Arrhythmias. Pacing and Clinical Electrophysiology, 20(2), 397-413. doi:10.1111/j.1540-8159.1997.tb06199.x

Trayanova, N. A., & Boyle, P. M. (2013). Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(2), 209-224. doi:10.1002/wsbm.1256

Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H., & Hassaguerre, M. (2016). Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm, 13(7), 1536-1543. doi:10.1016/j.hrthm.2016.03.019

Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845

Weber, F. M., Keller, D. U. J., Bauer, S., Seemann, G., Lorenz, C., & Dössel, O. (2011). Predicting Tissue Conductivity Influences on Body Surface Potentials—An Efficient Approach Based on Principal Component Analysis. IEEE Transactions on Biomedical Engineering, 58(2), 265-273. doi:10.1109/tbme.2010.2090151

Zhao, J., Kharche, S., Hansen, B., Csepe, T., Wang, Y., Stiles, M., & Fedorov, V. (2015). Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. International Journal of Molecular Sciences, 16(12), 10834-10854. doi:10.3390/ijms160510834

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record