- -

Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Godoy, Eduardo J. es_ES
dc.contributor.author Lozano, Miguel es_ES
dc.contributor.author García-Fernández, Ignacio es_ES
dc.contributor.author Ferrer-Albero, Ana es_ES
dc.contributor.author MacLeod, Rob es_ES
dc.contributor.author Saiz, Javier es_ES
dc.contributor.author Sebastián, Rafael es_ES
dc.date.accessioned 2020-07-07T03:32:54Z
dc.date.available 2020-07-07T03:32:54Z
dc.date.issued 2018-05-18 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/147528
dc.description.abstract [EN] Introduction: Focal atrial tachycardia is commonly treated by radio frequency ablation with an acceptable long-term success. Although the location of ectopic foci tends to appear in specific hot-spots, they can be located virtually in any atrial region. Multi-electrode surface ECG systems allow acquiring dense body surface potential maps (BSPM) for non-invasive therapy planning of cardiac arrhythmia. However, the activation of the atria could be affected by fibrosis and therefore biomarkers based on BSPM need to take these effects into account. We aim to analyze the effect of fibrosis on a BSPM derived index, and its potential application to predict the location of ectopic foci in the atria. Methodology: We have developed a 3D atrial model that includes 5 distributions of patchy fibrosis in the left atrium at 5 different stages. Each stage corresponds to a different amount of fibrosis that ranges from 2 to 40%. The 25 resulting 3D models were used for simulation of Focal Atrial Tachycardia (FAT), triggered from 19 different locations described in clinical studies. BSPM were obtained for all simulations, and the body surface potential integral maps (BSPiM) were calculated to describe atrial activations. A machine learning (ML) pipeline using a supervised learning model and support vector machine was developed to learn the BSPM patterns of each of the 475 activation sequences and relate them to the origin of the FAT source. Results: Activation maps for stages with more than 15% of fibrosis were greatly affected, producing conduction blocks and delays in propagation. BSPiMs did not always cluster into non-overlapped groups since BSPiMs were highly altered by the conduction blocks. From stage 3 (15% fibrosis) the BSPiMs showed differences for ectopic beats placed around the area of the pulmonary veins. Classification results were mostly above 84% for all the configurations studied when a large enough number of electrodes were used to map the torso. However, the presence of fibrosis increases the area of the ectopic focus location and therefore decreases the utility for the electrophysiologist. Conclusions: The results indicate that the proposed ML pipeline is a promising methodology for non-invasive ectopic foci localization from BSPM signal even when fibrosis is present. es_ES
dc.description.sponsorship This work was partially supported by Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) DPI2015-69125-R and TIN2014-59932-JIN (MINECO/FEDER, UE). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Atrial tachycardia es_ES
dc.subject Body surface potential map es_ES
dc.subject Structural remodeling es_ES
dc.subject Ectopic focus location es_ES
dc.subject Optimal electrode location es_ES
dc.subject Machine-learning es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2018.00404 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-59932-JIN/ES/CARACTERIZACION Y DIAGNOSTICO NO INVASIVO DE ARRITMIAS CARDIACAS MEDIANTE MODELADO COMPUTACIONAL 3D ANATOMO-FUNCIONAL DEL CORAZON Y TORSO HUMANO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-69125-R/ES/SIMULACION COMPUTACIONAL PARA LA PREDICCION PERSONALIZADA DE LOS EFECTOS DE LOS FARMACOS SOBRE LA ACTIVIDAD CARDIACA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Godoy, EJ.; Lozano, M.; García-Fernández, I.; Ferrer-Albero, A.; Macleod, R.; Saiz, J.; Sebastián, R. (2018). Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study. Frontiers in Physiology. 9:1-18. https://doi.org/10.3389/fphys.2018.00404 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2018.00404 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 29867517 es_ES
dc.identifier.pmcid PMC5968126 es_ES
dc.relation.pasarela S\386416 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Boyle, P. M., Zahid, S., & Trayanova, N. A. (2016). Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace, 18(suppl_4), iv136-iv145. doi:10.1093/europace/euw358 es_ES
dc.description.references Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 es_ES
dc.description.references Daccarett, M., Badger, T. J., Akoum, N., Burgon, N. S., Mahnkopf, C., Vergara, G., … Marrouche, N. F. (2011). Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 57(7), 831-838. doi:10.1016/j.jacc.2010.09.049 es_ES
dc.description.references Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 es_ES
dc.description.references Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 es_ES
dc.description.references Ferrer-Albero, A., Godoy, E. J., Lozano, M., Martínez-Mateu, L., Atienza, F., Saiz, J., & Sebastian, R. (2017). Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps. PLOS ONE, 12(7), e0181263. doi:10.1371/journal.pone.0181263 es_ES
dc.description.references Geselowitz, D. B., & Miller, W. T. (1983). A bidomain model for anisotropic cardiac muscle. Annals of Biomedical Engineering, 11(3-4), 191-206. doi:10.1007/bf02363286 es_ES
dc.description.references Giffard-Roisin, S., Jackson, T., Fovargue, L., Lee, J., Delingette, H., Razavi, R., … Sermesant, M. (2017). Noninvasive Personalization of a Cardiac Electrophysiology Model From Body Surface Potential Mapping. IEEE Transactions on Biomedical Engineering, 64(9), 2206-2218. doi:10.1109/tbme.2016.2629849 es_ES
dc.description.references Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370 es_ES
dc.description.references Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 es_ES
dc.description.references Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 es_ES
dc.description.references HOFFMANN, E., REITHMANN, C., NIMMERMANN, P., ELSER, F., DORWARTH, U., REMP, T., & STEINBECK, G. (2002). Clinical Experience with Electroanatomic Mapping of Ectopic Atrial Tachycardia. Pacing and Clinical Electrophysiology, 25(1), 49-56. doi:10.1046/j.1460-9592.2002.00049.x es_ES
dc.description.references Jacquemet, V. (2012). An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations. Computer Methods and Programs in Biomedicine, 108(2), 548-558. doi:10.1016/j.cmpb.2011.05.003 es_ES
dc.description.references Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364 es_ES
dc.description.references Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485 es_ES
dc.description.references Kistler, P. M., Fynn, S. P., Haqqani, H., Stevenson, I. H., Vohra, J. K., Morton, J. B., … Kalman, J. M. (2005). Focal Atrial Tachycardia From the Ostium of the Coronary Sinus. Journal of the American College of Cardiology, 45(9), 1488-1493. doi:10.1016/j.jacc.2005.01.042 es_ES
dc.description.references Kistler, P. M., Roberts-Thomson, K. C., Haqqani, H. M., Fynn, S. P., Singarayar, S., Vohra, J. K., … Kalman, J. M. (2006). P-Wave Morphology in Focal Atrial Tachycardia. Journal of the American College of Cardiology, 48(5), 1010-1017. doi:10.1016/j.jacc.2006.03.058 es_ES
dc.description.references Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Hussin, A., Vohra, J. K., … Kalman, J. M. (2003). Electrophysiological and Electrocardiographic Characteristics of Focal Atrial Tachycardia Originating From the Pulmonary Veins. Circulation, 108(16), 1968-1975. doi:10.1161/01.cir.0000095269.36984.75 es_ES
dc.description.references Kistler, P. M., Sanders, P., Hussin, A., Morton, J. B., Vohra, J. K., Sparks, P. B., & Kalman, J. M. (2003). Focal atrial tachycardia arising from the mitral annulus. Journal of the American College of Cardiology, 41(12), 2212-2219. doi:10.1016/s0735-1097(03)00484-4 es_ES
dc.description.references Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 es_ES
dc.description.references MacLeod, R. S., Kholmovski, E., DiBella, E. V. R., Oakes, R. S., Blauer, J. E., Fish, E., … Marrouche, N. F. (2008). Integration of MRI in evaluation and ablation of atrial fibrillation. 2008 Computers in Cardiology. doi:10.1109/cic.2008.4748981 es_ES
dc.description.references Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 es_ES
dc.description.references Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474 es_ES
dc.description.references MORTON, J. B., SANDERS, P., DAS, A., VOHRA, J. K., SPARKS, P. B., & KALMAN, J. M. (2001). Focal Atrial Tachycardia Arising from the Tricuspid Annulus: Electrophysiologic and Electrocardiographic Characteristics. Journal of Cardiovascular Electrophysiology, 12(6), 653-659. doi:10.1046/j.1540-8167.2001.00653.x es_ES
dc.description.references Niederer, S. A., Kerfoot, E., Benson, A. P., Bernabeu, M. O., Bernus, O., Bradley, C., … Smith, N. P. (2011). Verification of cardiac tissue electrophysiology simulators using an N -version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1954), 4331-4351. doi:10.1098/rsta.2011.0139 es_ES
dc.description.references Oakes, R. S., Badger, T. J., Kholmovski, E. G., Akoum, N., Burgon, N. S., Fish, E. N., … Marrouche, N. F. (2009). Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients With Atrial Fibrillation. Circulation, 119(13), 1758-1767. doi:10.1161/circulationaha.108.811877 es_ES
dc.description.references Ramanathan, C., Jia, P., Ghanem, R., Calvetti, D., & Rudy, Y. (2003). Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method. Annals of Biomedical Engineering, 31(8), 981-994. doi:10.1114/1.1588655 es_ES
dc.description.references Santangeli, P., & Marchlinski, F. E. (2017). Techniques for the provocation, localization, and ablation of non–pulmonary vein triggers for atrial fibrillation. Heart Rhythm, 14(7), 1087-1096. doi:10.1016/j.hrthm.2017.02.030 es_ES
dc.description.references Santangeli, P., Zado, E. S., Hutchinson, M. D., Riley, M. P., Lin, D., Frankel, D. S., … Marchlinski, F. E. (2016). Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm, 13(2), 374-382. doi:10.1016/j.hrthm.2015.10.023 es_ES
dc.description.references Saoudi, N. (2001). A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases. A Statement from a Joint Expert Group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 22(14), 1162-1182. doi:10.1053/euhj.2001.2658 es_ES
dc.description.references Shah, A. J., Hocini, M., Pascale, P., Roten, L., Komatsu, Y., … Daly, M. (2013). Body Surface Electrocardiographic Mapping for Non-invasive Identification of Arrhythmic Sources. Arrhythmia & Electrophysiology Review, 2(1), 16. doi:10.15420/aer.2013.2.1.16 es_ES
dc.description.references SippensGroenewegen, A., Natale, A., Marrouche, N. F., Bash, D., & Cheng, J. (2004). Potential role of body surface ECG mapping for localization of atrial fibrillation trigger sites. Journal of Electrocardiology, 37, 47-52. doi:10.1016/j.jelectrocard.2004.08.017 es_ES
dc.description.references Sippensgroenewegen, A., Roithinger, F. X., Peeters, H. A. ., Linnenbank, A. C., van Hemel, N. M., Steiner, P. R., & Lesh, M. D. (1998). Body surface mapping of atrial arrhythmias: Atlas of paced p wave integral maps to localize the focal origin of right atrial tachycardia. Journal of Electrocardiology, 31, 85-91. doi:10.1016/s0022-0736(98)90298-9 es_ES
dc.description.references SPACH, M. S., & BOINEAU, J. P. (1997). Microfibrosis Produces Electrical Load Variations Due to Loss of Side-to-Side Cell Connections; A Major Mechanism of Structural Heart Disease Arrhythmias. Pacing and Clinical Electrophysiology, 20(2), 397-413. doi:10.1111/j.1540-8159.1997.tb06199.x es_ES
dc.description.references Trayanova, N. A., & Boyle, P. M. (2013). Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(2), 209-224. doi:10.1002/wsbm.1256 es_ES
dc.description.references Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H., & Hassaguerre, M. (2016). Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm, 13(7), 1536-1543. doi:10.1016/j.hrthm.2016.03.019 es_ES
dc.description.references Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845 es_ES
dc.description.references Weber, F. M., Keller, D. U. J., Bauer, S., Seemann, G., Lorenz, C., & Dössel, O. (2011). Predicting Tissue Conductivity Influences on Body Surface Potentials—An Efficient Approach Based on Principal Component Analysis. IEEE Transactions on Biomedical Engineering, 58(2), 265-273. doi:10.1109/tbme.2010.2090151 es_ES
dc.description.references Zhao, J., Kharche, S., Hansen, B., Csepe, T., Wang, Y., Stiles, M., & Fedorov, V. (2015). Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. International Journal of Molecular Sciences, 16(12), 10834-10854. doi:10.3390/ijms160510834 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem