Mostrar el registro sencillo del ítem
dc.contributor.author | Godoy, Eduardo J. | es_ES |
dc.contributor.author | Lozano, Miguel | es_ES |
dc.contributor.author | García-Fernández, Ignacio | es_ES |
dc.contributor.author | Ferrer-Albero, Ana | es_ES |
dc.contributor.author | MacLeod, Rob | es_ES |
dc.contributor.author | Saiz, Javier | es_ES |
dc.contributor.author | Sebastián, Rafael | es_ES |
dc.date.accessioned | 2020-07-07T03:32:54Z | |
dc.date.available | 2020-07-07T03:32:54Z | |
dc.date.issued | 2018-05-18 | es_ES |
dc.identifier.issn | 1664-042X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147528 | |
dc.description.abstract | [EN] Introduction: Focal atrial tachycardia is commonly treated by radio frequency ablation with an acceptable long-term success. Although the location of ectopic foci tends to appear in specific hot-spots, they can be located virtually in any atrial region. Multi-electrode surface ECG systems allow acquiring dense body surface potential maps (BSPM) for non-invasive therapy planning of cardiac arrhythmia. However, the activation of the atria could be affected by fibrosis and therefore biomarkers based on BSPM need to take these effects into account. We aim to analyze the effect of fibrosis on a BSPM derived index, and its potential application to predict the location of ectopic foci in the atria. Methodology: We have developed a 3D atrial model that includes 5 distributions of patchy fibrosis in the left atrium at 5 different stages. Each stage corresponds to a different amount of fibrosis that ranges from 2 to 40%. The 25 resulting 3D models were used for simulation of Focal Atrial Tachycardia (FAT), triggered from 19 different locations described in clinical studies. BSPM were obtained for all simulations, and the body surface potential integral maps (BSPiM) were calculated to describe atrial activations. A machine learning (ML) pipeline using a supervised learning model and support vector machine was developed to learn the BSPM patterns of each of the 475 activation sequences and relate them to the origin of the FAT source. Results: Activation maps for stages with more than 15% of fibrosis were greatly affected, producing conduction blocks and delays in propagation. BSPiMs did not always cluster into non-overlapped groups since BSPiMs were highly altered by the conduction blocks. From stage 3 (15% fibrosis) the BSPiMs showed differences for ectopic beats placed around the area of the pulmonary veins. Classification results were mostly above 84% for all the configurations studied when a large enough number of electrodes were used to map the torso. However, the presence of fibrosis increases the area of the ectopic focus location and therefore decreases the utility for the electrophysiologist. Conclusions: The results indicate that the proposed ML pipeline is a promising methodology for non-invasive ectopic foci localization from BSPM signal even when fibrosis is present. | es_ES |
dc.description.sponsorship | This work was partially supported by Ministerio de Economia y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) DPI2015-69125-R and TIN2014-59932-JIN (MINECO/FEDER, UE). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Physiology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Atrial tachycardia | es_ES |
dc.subject | Body surface potential map | es_ES |
dc.subject | Structural remodeling | es_ES |
dc.subject | Ectopic focus location | es_ES |
dc.subject | Optimal electrode location | es_ES |
dc.subject | Machine-learning | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fphys.2018.00404 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-59932-JIN/ES/CARACTERIZACION Y DIAGNOSTICO NO INVASIVO DE ARRITMIAS CARDIACAS MEDIANTE MODELADO COMPUTACIONAL 3D ANATOMO-FUNCIONAL DEL CORAZON Y TORSO HUMANO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-69125-R/ES/SIMULACION COMPUTACIONAL PARA LA PREDICCION PERSONALIZADA DE LOS EFECTOS DE LOS FARMACOS SOBRE LA ACTIVIDAD CARDIACA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Godoy, EJ.; Lozano, M.; García-Fernández, I.; Ferrer-Albero, A.; Macleod, R.; Saiz, J.; Sebastián, R. (2018). Atrial Fibrosis Hampers Non-invasive Localization of Atrial Ectopic Foci From Multi-Electrode Signals: A 3D Simulation Study. Frontiers in Physiology. 9:1-18. https://doi.org/10.3389/fphys.2018.00404 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fphys.2018.00404 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.pmid | 29867517 | es_ES |
dc.identifier.pmcid | PMC5968126 | es_ES |
dc.relation.pasarela | S\386416 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Boyle, P. M., Zahid, S., & Trayanova, N. A. (2016). Towards personalized computational modelling of the fibrotic substrate for atrial arrhythmia. EP Europace, 18(suppl_4), iv136-iv145. doi:10.1093/europace/euw358 | es_ES |
dc.description.references | Courtemanche, M., Ramirez, R. J., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 275(1), H301-H321. doi:10.1152/ajpheart.1998.275.1.h301 | es_ES |
dc.description.references | Daccarett, M., Badger, T. J., Akoum, N., Burgon, N. S., Mahnkopf, C., Vergara, G., … Marrouche, N. F. (2011). Association of Left Atrial Fibrosis Detected by Delayed-Enhancement Magnetic Resonance Imaging and the Risk of Stroke in Patients With Atrial Fibrillation. Journal of the American College of Cardiology, 57(7), 831-838. doi:10.1016/j.jacc.2010.09.049 | es_ES |
dc.description.references | Dössel, O., Krueger, M. W., Weber, F. M., Wilhelms, M., & Seemann, G. (2012). Computational modeling of the human atrial anatomy and electrophysiology. Medical & Biological Engineering & Computing, 50(8), 773-799. doi:10.1007/s11517-012-0924-6 | es_ES |
dc.description.references | Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 | es_ES |
dc.description.references | Ferrer-Albero, A., Godoy, E. J., Lozano, M., Martínez-Mateu, L., Atienza, F., Saiz, J., & Sebastian, R. (2017). Non-invasive localization of atrial ectopic beats by using simulated body surface P-wave integral maps. PLOS ONE, 12(7), e0181263. doi:10.1371/journal.pone.0181263 | es_ES |
dc.description.references | Geselowitz, D. B., & Miller, W. T. (1983). A bidomain model for anisotropic cardiac muscle. Annals of Biomedical Engineering, 11(3-4), 191-206. doi:10.1007/bf02363286 | es_ES |
dc.description.references | Giffard-Roisin, S., Jackson, T., Fovargue, L., Lee, J., Delingette, H., Razavi, R., … Sermesant, M. (2017). Noninvasive Personalization of a Cardiac Electrophysiology Model From Body Surface Potential Mapping. IEEE Transactions on Biomedical Engineering, 64(9), 2206-2218. doi:10.1109/tbme.2016.2629849 | es_ES |
dc.description.references | Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault, L. E., Selby, J. V., & Singer, D. E. (2001). Prevalence of Diagnosed Atrial Fibrillation in Adults. JAMA, 285(18), 2370. doi:10.1001/jama.285.18.2370 | es_ES |
dc.description.references | Guillem, M. S., Climent, A. M., Rodrigo, M., Fernández-Avilés, F., Atienza, F., & Berenfeld, O. (2016). Presence and stability of rotors in atrial fibrillation: evidence and therapeutic implications. Cardiovascular Research, 109(4), 480-492. doi:10.1093/cvr/cvw011 | es_ES |
dc.description.references | Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 | es_ES |
dc.description.references | HOFFMANN, E., REITHMANN, C., NIMMERMANN, P., ELSER, F., DORWARTH, U., REMP, T., & STEINBECK, G. (2002). Clinical Experience with Electroanatomic Mapping of Ectopic Atrial Tachycardia. Pacing and Clinical Electrophysiology, 25(1), 49-56. doi:10.1046/j.1460-9592.2002.00049.x | es_ES |
dc.description.references | Jacquemet, V. (2012). An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations. Computer Methods and Programs in Biomedicine, 108(2), 548-558. doi:10.1016/j.cmpb.2011.05.003 | es_ES |
dc.description.references | Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364 | es_ES |
dc.description.references | Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485 | es_ES |
dc.description.references | Kistler, P. M., Fynn, S. P., Haqqani, H., Stevenson, I. H., Vohra, J. K., Morton, J. B., … Kalman, J. M. (2005). Focal Atrial Tachycardia From the Ostium of the Coronary Sinus. Journal of the American College of Cardiology, 45(9), 1488-1493. doi:10.1016/j.jacc.2005.01.042 | es_ES |
dc.description.references | Kistler, P. M., Roberts-Thomson, K. C., Haqqani, H. M., Fynn, S. P., Singarayar, S., Vohra, J. K., … Kalman, J. M. (2006). P-Wave Morphology in Focal Atrial Tachycardia. Journal of the American College of Cardiology, 48(5), 1010-1017. doi:10.1016/j.jacc.2006.03.058 | es_ES |
dc.description.references | Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Hussin, A., Vohra, J. K., … Kalman, J. M. (2003). Electrophysiological and Electrocardiographic Characteristics of Focal Atrial Tachycardia Originating From the Pulmonary Veins. Circulation, 108(16), 1968-1975. doi:10.1161/01.cir.0000095269.36984.75 | es_ES |
dc.description.references | Kistler, P. M., Sanders, P., Hussin, A., Morton, J. B., Vohra, J. K., Sparks, P. B., & Kalman, J. M. (2003). Focal atrial tachycardia arising from the mitral annulus. Journal of the American College of Cardiology, 41(12), 2212-2219. doi:10.1016/s0735-1097(03)00484-4 | es_ES |
dc.description.references | Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 | es_ES |
dc.description.references | MacLeod, R. S., Kholmovski, E., DiBella, E. V. R., Oakes, R. S., Blauer, J. E., Fish, E., … Marrouche, N. F. (2008). Integration of MRI in evaluation and ablation of atrial fibrillation. 2008 Computers in Cardiology. doi:10.1109/cic.2008.4748981 | es_ES |
dc.description.references | Maleckar, M. M., Greenstein, J. L., Giles, W. R., & Trayanova, N. A. (2009). Electrotonic Coupling between Human Atrial Myocytes and Fibroblasts Alters Myocyte Excitability and Repolarization. Biophysical Journal, 97(8), 2179-2190. doi:10.1016/j.bpj.2009.07.054 | es_ES |
dc.description.references | Morgan, R., Colman, M. A., Chubb, H., Seemann, G., & Aslanidi, O. V. (2016). Slow Conduction in the Border Zones of Patchy Fibrosis Stabilizes the Drivers for Atrial Fibrillation: Insights from Multi-Scale Human Atrial Modeling. Frontiers in Physiology, 7. doi:10.3389/fphys.2016.00474 | es_ES |
dc.description.references | MORTON, J. B., SANDERS, P., DAS, A., VOHRA, J. K., SPARKS, P. B., & KALMAN, J. M. (2001). Focal Atrial Tachycardia Arising from the Tricuspid Annulus: Electrophysiologic and Electrocardiographic Characteristics. Journal of Cardiovascular Electrophysiology, 12(6), 653-659. doi:10.1046/j.1540-8167.2001.00653.x | es_ES |
dc.description.references | Niederer, S. A., Kerfoot, E., Benson, A. P., Bernabeu, M. O., Bernus, O., Bradley, C., … Smith, N. P. (2011). Verification of cardiac tissue electrophysiology simulators using an N -version benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1954), 4331-4351. doi:10.1098/rsta.2011.0139 | es_ES |
dc.description.references | Oakes, R. S., Badger, T. J., Kholmovski, E. G., Akoum, N., Burgon, N. S., Fish, E. N., … Marrouche, N. F. (2009). Detection and Quantification of Left Atrial Structural Remodeling With Delayed-Enhancement Magnetic Resonance Imaging in Patients With Atrial Fibrillation. Circulation, 119(13), 1758-1767. doi:10.1161/circulationaha.108.811877 | es_ES |
dc.description.references | Ramanathan, C., Jia, P., Ghanem, R., Calvetti, D., & Rudy, Y. (2003). Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method. Annals of Biomedical Engineering, 31(8), 981-994. doi:10.1114/1.1588655 | es_ES |
dc.description.references | Santangeli, P., & Marchlinski, F. E. (2017). Techniques for the provocation, localization, and ablation of non–pulmonary vein triggers for atrial fibrillation. Heart Rhythm, 14(7), 1087-1096. doi:10.1016/j.hrthm.2017.02.030 | es_ES |
dc.description.references | Santangeli, P., Zado, E. S., Hutchinson, M. D., Riley, M. P., Lin, D., Frankel, D. S., … Marchlinski, F. E. (2016). Prevalence and distribution of focal triggers in persistent and long-standing persistent atrial fibrillation. Heart Rhythm, 13(2), 374-382. doi:10.1016/j.hrthm.2015.10.023 | es_ES |
dc.description.references | Saoudi, N. (2001). A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases. A Statement from a Joint Expert Group from the Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. European Heart Journal, 22(14), 1162-1182. doi:10.1053/euhj.2001.2658 | es_ES |
dc.description.references | Shah, A. J., Hocini, M., Pascale, P., Roten, L., Komatsu, Y., … Daly, M. (2013). Body Surface Electrocardiographic Mapping for Non-invasive Identification of Arrhythmic Sources. Arrhythmia & Electrophysiology Review, 2(1), 16. doi:10.15420/aer.2013.2.1.16 | es_ES |
dc.description.references | SippensGroenewegen, A., Natale, A., Marrouche, N. F., Bash, D., & Cheng, J. (2004). Potential role of body surface ECG mapping for localization of atrial fibrillation trigger sites. Journal of Electrocardiology, 37, 47-52. doi:10.1016/j.jelectrocard.2004.08.017 | es_ES |
dc.description.references | Sippensgroenewegen, A., Roithinger, F. X., Peeters, H. A. ., Linnenbank, A. C., van Hemel, N. M., Steiner, P. R., & Lesh, M. D. (1998). Body surface mapping of atrial arrhythmias: Atlas of paced p wave integral maps to localize the focal origin of right atrial tachycardia. Journal of Electrocardiology, 31, 85-91. doi:10.1016/s0022-0736(98)90298-9 | es_ES |
dc.description.references | SPACH, M. S., & BOINEAU, J. P. (1997). Microfibrosis Produces Electrical Load Variations Due to Loss of Side-to-Side Cell Connections; A Major Mechanism of Structural Heart Disease Arrhythmias. Pacing and Clinical Electrophysiology, 20(2), 397-413. doi:10.1111/j.1540-8159.1997.tb06199.x | es_ES |
dc.description.references | Trayanova, N. A., & Boyle, P. M. (2013). Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 6(2), 209-224. doi:10.1002/wsbm.1256 | es_ES |
dc.description.references | Vigmond, E., Pashaei, A., Amraoui, S., Cochet, H., & Hassaguerre, M. (2016). Percolation as a mechanism to explain atrial fractionated electrograms and reentry in a fibrosis model based on imaging data. Heart Rhythm, 13(7), 1536-1543. doi:10.1016/j.hrthm.2016.03.019 | es_ES |
dc.description.references | Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236-244. doi:10.1080/01621459.1963.10500845 | es_ES |
dc.description.references | Weber, F. M., Keller, D. U. J., Bauer, S., Seemann, G., Lorenz, C., & Dössel, O. (2011). Predicting Tissue Conductivity Influences on Body Surface Potentials—An Efficient Approach Based on Principal Component Analysis. IEEE Transactions on Biomedical Engineering, 58(2), 265-273. doi:10.1109/tbme.2010.2090151 | es_ES |
dc.description.references | Zhao, J., Kharche, S., Hansen, B., Csepe, T., Wang, Y., Stiles, M., & Fedorov, V. (2015). Optimization of Catheter Ablation of Atrial Fibrillation: Insights Gained from Clinically-Derived Computer Models. International Journal of Molecular Sciences, 16(12), 10834-10854. doi:10.3390/ijms160510834 | es_ES |