- -

A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry

Show full item record

Domínguez, DS.; Rocha, RV.; Iglesias, SM.; Escrivá, A.; Alves Filho, H. (2018). A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry. Progress in Nuclear Energy. 109:180-187. https://doi.org/10.1016/j.pnucene.2018.08.007

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147529

Files in this item

Item Metadata

Title: A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry
Author: Domínguez, Dany S. Rocha,Rogério V.M. Iglesias, Susana M. Escrivá, A. Alves Filho, Hermes
UPV Unit: Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Abstract:
[EN] Spectral Green's function nodal methods (SGF) are well established as a class of coarse mesh methods. For this reason, they are widely used in the solution of neutron transport problems in discrete ordinates formulation ...[+]
Subjects: Composite spatial grid , Eigenvalue problems , One-speed neutron transport , Discrete ordinates , Spectral diamond , Constant nodal method
Copyrigths: Cerrado
Source:
Progress in Nuclear Energy. (issn: 0149-1970 )
DOI: 10.1016/j.pnucene.2018.08.007
Publisher:
Elsevier
Publisher version: http://doi.org/10.1016/j.pnucene.2018.08.007
Project ID:
FAPESB/BOL4020/2014
Thanks:
The authors acknowledge the Fundacdo de Amparo a Pesquisa do Estado da Bahia, Brazil, for the partial support to this research (Grant number BOL4020/2014). Also, the authors appreciate the infrastructure offered by the ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record