- -

A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domínguez, Dany S. es_ES
dc.contributor.author Rocha,Rogério V.M. es_ES
dc.contributor.author Iglesias, Susana M. es_ES
dc.contributor.author Escrivá, A. es_ES
dc.contributor.author Alves Filho, Hermes es_ES
dc.date.accessioned 2020-07-07T03:32:57Z
dc.date.available 2020-07-07T03:32:57Z
dc.date.issued 2018-11 es_ES
dc.identifier.issn 0149-1970 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147529
dc.description.abstract [EN] Spectral Green's function nodal methods (SGF) are well established as a class of coarse mesh methods. For this reason, they are widely used in the solution of neutron transport problems in discrete ordinates formulation (S-N). When compared with fine mesh methods, SGF are considered efficient, as solutions are as accurate as, using a smaller number of spatial nodes, reducing floating point operations. However, the development of spectral-nodal methods for X-Y Cartesian geometries, has been limited due to (a) difficulties in implementing efficient computational algorithms and, (b) high algebraic and computational costs. This is because these methods need to use NBI-type (One-Node Block Inversion) sweep schemes. The composite spatial grid methods were developed to overcome these challenges. In this work, we describe a composite spatial grid spectral-nodal method to solve one-speed discrete ordinate eigenvalue problems in X-Y Cartesian geometry with isotropic scattering. The discretization is developed into two stages and two 1D problems coupled by transverse leakage terms in each domain region are obtained. In order to converge toward the numerical solution, we used an alternating-direction iterative technique and a modified source iteration sweep scheme. Also, we used the conventional power method to estimate the problem's dominant eigenvalue. Numerical results for benchmark problems are presented to illustrate the accuracy and performance of the developed method. This approach offers more accurate and efficient results for integral quantities if compared with others SGF methods. es_ES
dc.description.sponsorship The authors acknowledge the Fundacdo de Amparo a Pesquisa do Estado da Bahia, Brazil, for the partial support to this research (Grant number BOL4020/2014). Also, the authors appreciate the infrastructure offered by the Nude de Biologia Computacional e Gestao de InformacOes Biotecnologicas of the Universidade Estadual de Santa Cruz for the development of the computational experiments. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Progress in Nuclear Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Composite spatial grid es_ES
dc.subject Eigenvalue problems es_ES
dc.subject One-speed neutron transport es_ES
dc.subject Discrete ordinates es_ES
dc.subject Spectral diamond es_ES
dc.subject Constant nodal method es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.pnucene.2018.08.007 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESB//BOL4020%2F2014/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ingeniería Energética - Institut d'Enginyeria Energètica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Domínguez, DS.; Rocha, RV.; Iglesias, SM.; Escrivá, A.; Alves Filho, H. (2018). A composite spatial grid spectral Green's function method for one speed discrete ordinates eigenvalue problems in two-dimensional Cartesian geometry. Progress in Nuclear Energy. 109:180-187. https://doi.org/10.1016/j.pnucene.2018.08.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1016/j.pnucene.2018.08.007 es_ES
dc.description.upvformatpinicio 180 es_ES
dc.description.upvformatpfin 187 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.relation.pasarela S\374273 es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado da Bahia es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem