- -

Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol

Show full item record

Llopis-Perez, S.; Garcia Fernandez, MT.; Cantin, A.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2018). Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science & Technology. 8(22):5835-5847. https://doi.org/10.1039/c8cy01650j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147531

Files in this item

Item Metadata

Title: Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol
Author: Llopis-Perez, Sebastian Garcia Fernandez, Maria Teresa Cantin, A. Velty, Alexandra Díaz Morales, Urbano Manuel Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] A new chiral mesoporous hybrid material was synthesized based on pyrrolidine units included in a siliceous framework, HybPyr, and integrated into the organic-inorganic structure, from a specific bis-silylated precursor. ...[+]
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c8cy01650j
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c8cy01650j
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//BES-2015-072627/ES/BES-2015-072627/
info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/
info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Thanks:
The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. S. Ll. thanks predoctoral fellowships from MINECO ...[+]
Type: Artículo

References

R. E. Gawley and J.Aub , Principles of Asymmetric Synthesis , Elsevier , 2012

Hultzsch, K. (2005). Transition Metal-Catalyzed Asymmetric Hydroamination of Alkenes (AHA). Advanced Synthesis & Catalysis, 347(2-3), 367-391. doi:10.1002/adsc.200404261

Giri, R., Shi, B.-F., Engle, K. M., Maugel, N., & Yu, J.-Q. (2009). Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 38(11), 3242. doi:10.1039/b816707a [+]
R. E. Gawley and J.Aub , Principles of Asymmetric Synthesis , Elsevier , 2012

Hultzsch, K. (2005). Transition Metal-Catalyzed Asymmetric Hydroamination of Alkenes (AHA). Advanced Synthesis & Catalysis, 347(2-3), 367-391. doi:10.1002/adsc.200404261

Giri, R., Shi, B.-F., Engle, K. M., Maugel, N., & Yu, J.-Q. (2009). Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 38(11), 3242. doi:10.1039/b816707a

Machajewski, T. D., & Wong, C.-H. (2000). The Catalytic Asymmetric Aldol Reaction. Angewandte Chemie International Edition, 39(8), 1352-1375. doi:10.1002/(sici)1521-3773(20000417)39:8<1352::aid-anie1352>3.0.co;2-j

K. Drauz and H.Waldmann , Enzyme Catalysis in Organic Synthesis , WCH , Weinheim , 1995

Dalko, P. I., & Moisan, L. (2004). In the Golden Age of Organocatalysis. Angewandte Chemie International Edition, 43(39), 5138-5175. doi:10.1002/anie.200400650

Houk, K. N., & List, B. (2004). Asymmetric Organocatalysis. Accounts of Chemical Research, 37(8), 487-487. doi:10.1021/ar040216w

Notz, W., Tanaka, F., & Barbas, C. F. (2004). Enamine-Based Organocatalysis with Proline and Diamines:  The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Accounts of Chemical Research, 37(8), 580-591. doi:10.1021/ar0300468

Chiroli, V., Benaglia, M., Puglisi, A., Porta, R., Jumde, R. P., & Mandoli, A. (2014). A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 16(5), 2798. doi:10.1039/c4gc00031e

R. A. Sheldon and van H.Bekkum , Fine Chemicals through Heterogeneous Catalysis , Wiley-VCH Verlag GmbH , Weinheim , 2001

H. F. Rase , Handbook of Commercial Catalysts: Heterogeneous Catalysts , CRC Press , New York , 2000

Hallman, K., & Moberg, C. (2001). Polymer-bound bis(oxazoline) as a chiral catalyst. Tetrahedron: Asymmetry, 12(10), 1475-1478. doi:10.1016/s0957-4166(01)00245-2

Clarke, R. J., & Shannon, I. J. (2001). Mesopore immobilised copper bis(oxazoline) complexes for enantioselective catalysis. Chemical Communications, (19), 1936-1937. doi:10.1039/b105655g

Bigi, F., Moroni, L., Maggi, R., & Sartori, G. (2002). Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(iii) complexes supported on amorphous or MCM-41 silica through a new triazine-based linkerElectronic supplementary information (ESI) available: synthesis of compounds 1, 3A, 3B, 4A, 4B and 1H NMR spectra. See http://www.rsc.org/suppdata/cc/b1/b110991j/. Chemical Communications, (7), 716-717. doi:10.1039/b110991j

Alza, E., Cambeiro, X. C., Jimeno, C., & Pericàs, M. A. (2007). Highly Enantioselective Michael Additions in Water Catalyzed by a PS-Supported Pyrrolidine. Organic Letters, 9(19), 3717-3720. doi:10.1021/ol071366k

Mallat, T., Orglmeister, E., & Baiker, A. (2007). Asymmetric Catalysis at Chiral Metal Surfaces. Chemical Reviews, 107(11), 4863-4890. doi:10.1021/cr0683663

Humblot, V., Haq, S., Muryn, C., Hofer, W. A., & Raval, R. (2002). From Local Adsorption Stresses to Chiral Surfaces:  (R,R)-Tartaric Acid on Ni(110). Journal of the American Chemical Society, 124(3), 503-510. doi:10.1021/ja012021e

Ma, L., Falkowski, J. M., Abney, C., & Lin, W. (2010). A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chemistry, 2(10), 838-846. doi:10.1038/nchem.738

Moreau, J. J. E., Vellutini, L., Wong Chi Man, M., & Bied, C. (2001). New Hybrid Organic−Inorganic Solids with Helical Morphology via H-Bond Mediated Sol−Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)- or (S,S)-Diureidocyclohexane. Journal of the American Chemical Society, 123(7), 1509-1510. doi:10.1021/ja003843z

Yang, Q., Han, D., Yang, H., & Li, C. (2008). Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry - An Asian Journal, 3(8-9), 1214-1229. doi:10.1002/asia.200800110

Corma, A., Iborra, S., Rodríguez, I., Iglesias, M., & Sánchez, F. (2002). Catalysis Letters, 82(3/4), 237-242. doi:10.1023/a:1020531315091

Monge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516a

Luanphaisarnnont, T., Hanprasit, S., Somjit, V., & Ervithayasuporn, V. (2017). Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions. Catalysis Letters, 148(2), 779-786. doi:10.1007/s10562-017-2286-z

List, B., Lerner, R. A., & Barbas, C. F. (2000). Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society, 122(10), 2395-2396. doi:10.1021/ja994280y

Hickmott, P. W. (1982). Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects—I. Tetrahedron, 38(14), 1975-2050. doi:10.1016/0040-4020(82)85149-1

List, B. (2006). The ying and yang of asymmetric aminocatalysis. Chemical Communications, (8), 819. doi:10.1039/b514296m

Palomo, C., & Mielgo, A. (2006). Diarylprolinol Ethers: Expanding the Potential of Enamine/Iminium-Ion Catalysis. Angewandte Chemie International Edition, 45(47), 7876-7880. doi:10.1002/anie.200602943

Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie, 117(9), 1393-1395. doi:10.1002/ange.200461959

Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie International Edition, 44(9), 1369-1371. doi:10.1002/anie.200461959

Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie, 117(27), 4284-4287. doi:10.1002/ange.200500599

Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie International Edition, 44(27), 4212-4215. doi:10.1002/anie.200500599

Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie, 118(36), 6130-6133. doi:10.1002/ange.200602207

Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie International Edition, 45(36), 5984-5987. doi:10.1002/anie.200602207

Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catalysis, 5(3), 1972-1985. doi:10.1021/acscatal.5b00002

Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., & Noto, R. (2011). Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions. Catalysis Communications, 16(1), 75-80. doi:10.1016/j.catcom.2011.08.040

A. Berkessel and H.Gröger , Asymmetric Organocatalysis: From Biomemetic Concepts to Applications in Asymmetric Synthesis , Wiley-VCH , Weinheim , 2005

Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877. doi:10.1002/1099-0690(200206)2002:12<1877::aid-ejoc1877>3.0.co;2-u

S. J. Gregg and K. S. W.Sing , Adsorption, Surface Area and Porosity , Academic Press , 2nd edn, 1982

Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Gray, D., Concellón, C., & Gallagher, T. (2004). Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters. The Journal of Organic Chemistry, 69(14), 4849-4851. doi:10.1021/jo049562h

Orliac, A., Routier, J., Burgat Charvillon, F., Sauer, W. H. B., Bombrun, A., Kulkarni, S. S., … Cossy, J. (2014). Enantioselective Synthesis and Physicochemical Properties of Libraries of 3-Amino- and 3-Amidofluoropiperidines. Chemistry - A European Journal, 20(13), 3813-3824. doi:10.1002/chem.201302423

Kovačková, S., Dračínský, M., & Rejman, D. (2011). The synthesis of piperidine nucleoside analogs—a comparison of several methods to access the introduction of nucleobases. Tetrahedron, 67(7), 1485-1500. doi:10.1016/j.tet.2010.12.029

Heindl, C., Hübner, H., & Gmeiner, P. (2003). Enantiospecific synthesis and receptor binding of novel dopamine receptor ligands employing natural 4-hydroxyproline as a practical and flexible building block. Tetrahedron: Asymmetry, 14(20), 3153-3172. doi:10.1016/j.tetasy.2003.08.020

Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions:  Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol0167006

Alexakis, A., & Andrey, O. (2002). Diamine-Catalyzed Asymmetric Michael Additions of Aldehydes and Ketones to Nitrostyrene. Organic Letters, 4(21), 3611-3614. doi:10.1021/ol026543q

Andrey, O., Alexakis, A., Tomassini, A., & Bernardinelli, G. (2004). The Use ofN-Alkyl-2,2′-bipyrrolidine Derivatives as Organocatalysts for the Asymmetric Michael Addition of Ketones and Aldehydes to Nitroolefins. Advanced Synthesis & Catalysis, 346(910), 1147-1168. doi:10.1002/adsc.200404037

Barros, M. T., & Faísca Phillips, A. M. (2007). Chiral Piperazines as Efficient Catalysts for the Asymmetric Michael Addition of Aldehydes to Nitroalkenes. European Journal of Organic Chemistry, 2007(1), 178-185. doi:10.1002/ejoc.200600731

Lu, D., Gong, Y., & Wang, W. (2010). Prolylprolinol-Catalyzed Asymmetric Michael Addition of Aliphatic Aldehydes to Nitroalkenes. Advanced Synthesis & Catalysis, 352(4), 644-650. doi:10.1002/adsc.200900687

Wang, W.-H., Abe, T., Wang, X.-B., Kodama, K., Hirose, T., & Zhang, G.-Y. (2010). Self-assembled proline-amino thioureas as efficient organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron: Asymmetry, 21(24), 2925-2933. doi:10.1016/j.tetasy.2010.11.025

Sagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746

Patora-Komisarska, K., Benohoud, M., Ishikawa, H., Seebach, D., & Hayashi, Y. (2011). Organocatalyzed Michael Addition of Aldehydes to Nitro Alkenes - Generally Accepted Mechanism Revisited and Revised. Helvetica Chimica Acta, 94(5), 719-745. doi:10.1002/hlca.201100122

Bolm, C., Rantanen, T., Schiffers, I., & Zani, L. (2005). Protonated Chiral Catalysts: Versatile Tools for Asymmetric Synthesis. Angewandte Chemie International Edition, 44(12), 1758-1763. doi:10.1002/anie.200500154

Sulzer-Mossé, S., & Alexakis, A. (2007). Chiral amines as organocatalysts for asymmetric conjugate addition to nitroolefins and vinyl sulfones via enamine activation. Chemical Communications, (30), 3123. doi:10.1039/b701216k

Li, P., Wang, L., Wang, M., & Zhang, Y. (2008). Polymer-Immobilized Pyrrolidine-Based Chiral Ionic Liquids as Recyclable Organocatalysts for Asymmetric Michael Additions to Nitrostyrenes under Solvent-Free Reaction Conditions. European Journal of Organic Chemistry, 2008(7), 1157-1160. doi:10.1002/ejoc.200701037

Androvič, L., Drabina, P., Svobodová, M., & Sedlák, M. (2016). Polystyrene supported benzoylthiourea—pyrrolidine organocatalyst for the enantioselective Michael addition. Tetrahedron: Asymmetry, 27(16), 782-787. doi:10.1016/j.tetasy.2016.06.015

M. Omar, E., Dhungana, K., D. Headley, A., & Basyaruddin Abdul Rahman, M. (2011). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide for Asymmetric Michael Addition Reactions of Aldehydes with Nitroolefins. Letters in Organic Chemistry, 8(3), 170-175. doi:10.2174/157017811795038395

Ni, B., Zhang, Q., Dhungana, K., & Headley, A. D. (2009). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the Highly Enantioselective Michael Addition to Nitroolefins. Organic Letters, 11(4), 1037-1040. doi:10.1021/ol900003e

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record