- -

Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Perez, Sebastian es_ES
dc.contributor.author Garcia Fernandez, Maria Teresa es_ES
dc.contributor.author Cantin, A. es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-07-07T03:33:00Z
dc.date.available 2020-07-07T03:33:00Z
dc.date.issued 2018-11-11 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147531
dc.description.abstract [EN] A new chiral mesoporous hybrid material was synthesized based on pyrrolidine units included in a siliceous framework, HybPyr, and integrated into the organic-inorganic structure, from a specific bis-silylated precursor. A fluoride sol-gel methodology under soft synthesis conditions and in the absence of sophisticated structural directing agents allowed the generation of a mesoporous architecture with a homogeneous distribution of active chiral moieties along the network. The hybrid material was studied by means of different characterization techniques (TGA, NMR and IR spectroscopy, chemical and elemental analyses, TEM, and textural measurements), verifying the stability and integrity of the asymmetric active sites in the solid. The hybrid material, HybPyr, is an excellent asymmetric heterogeneous and recyclable catalyst for enantioselective Michael addition of linear aldehydes to -nitrostyrene derivatives with high stereocontrol of the reaction products. es_ES
dc.description.sponsorship The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. S. Ll. thanks predoctoral fellowships from MINECO for economical support (BES-2015-072627). The authors thank the MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). The European Union is also acknowledged by ERC-AdG-2014-671093-SynCatMatch. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cy01650j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072627/ES/BES-2015-072627/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Llopis-Perez, S.; Garcia Fernandez, MT.; Cantin, A.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2018). Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science & Technology. 8(22):5835-5847. https://doi.org/10.1039/c8cy01650j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cy01650j es_ES
dc.description.upvformatpinicio 5835 es_ES
dc.description.upvformatpfin 5847 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 22 es_ES
dc.identifier.pmid 30713656 es_ES
dc.identifier.pmcid PMC6333262 es_ES
dc.relation.pasarela S\383037 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references R. E. Gawley and J.Aub , Principles of Asymmetric Synthesis , Elsevier , 2012 es_ES
dc.description.references Hultzsch, K. (2005). Transition Metal-Catalyzed Asymmetric Hydroamination of Alkenes (AHA). Advanced Synthesis & Catalysis, 347(2-3), 367-391. doi:10.1002/adsc.200404261 es_ES
dc.description.references Giri, R., Shi, B.-F., Engle, K. M., Maugel, N., & Yu, J.-Q. (2009). Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 38(11), 3242. doi:10.1039/b816707a es_ES
dc.description.references Machajewski, T. D., & Wong, C.-H. (2000). The Catalytic Asymmetric Aldol Reaction. Angewandte Chemie International Edition, 39(8), 1352-1375. doi:10.1002/(sici)1521-3773(20000417)39:8<1352::aid-anie1352>3.0.co;2-j es_ES
dc.description.references K. Drauz and H.Waldmann , Enzyme Catalysis in Organic Synthesis , WCH , Weinheim , 1995 es_ES
dc.description.references Dalko, P. I., & Moisan, L. (2004). In the Golden Age of Organocatalysis. Angewandte Chemie International Edition, 43(39), 5138-5175. doi:10.1002/anie.200400650 es_ES
dc.description.references Houk, K. N., & List, B. (2004). Asymmetric Organocatalysis. Accounts of Chemical Research, 37(8), 487-487. doi:10.1021/ar040216w es_ES
dc.description.references Notz, W., Tanaka, F., & Barbas, C. F. (2004). Enamine-Based Organocatalysis with Proline and Diamines:  The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Accounts of Chemical Research, 37(8), 580-591. doi:10.1021/ar0300468 es_ES
dc.description.references Chiroli, V., Benaglia, M., Puglisi, A., Porta, R., Jumde, R. P., & Mandoli, A. (2014). A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 16(5), 2798. doi:10.1039/c4gc00031e es_ES
dc.description.references R. A. Sheldon and van H.Bekkum , Fine Chemicals through Heterogeneous Catalysis , Wiley-VCH Verlag GmbH , Weinheim , 2001 es_ES
dc.description.references H. F. Rase , Handbook of Commercial Catalysts: Heterogeneous Catalysts , CRC Press , New York , 2000 es_ES
dc.description.references Hallman, K., & Moberg, C. (2001). Polymer-bound bis(oxazoline) as a chiral catalyst. Tetrahedron: Asymmetry, 12(10), 1475-1478. doi:10.1016/s0957-4166(01)00245-2 es_ES
dc.description.references Clarke, R. J., & Shannon, I. J. (2001). Mesopore immobilised copper bis(oxazoline) complexes for enantioselective catalysis. Chemical Communications, (19), 1936-1937. doi:10.1039/b105655g es_ES
dc.description.references Bigi, F., Moroni, L., Maggi, R., & Sartori, G. (2002). Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(iii) complexes supported on amorphous or MCM-41 silica through a new triazine-based linkerElectronic supplementary information (ESI) available: synthesis of compounds 1, 3A, 3B, 4A, 4B and 1H NMR spectra. See http://www.rsc.org/suppdata/cc/b1/b110991j/. Chemical Communications, (7), 716-717. doi:10.1039/b110991j es_ES
dc.description.references Alza, E., Cambeiro, X. C., Jimeno, C., & Pericàs, M. A. (2007). Highly Enantioselective Michael Additions in Water Catalyzed by a PS-Supported Pyrrolidine. Organic Letters, 9(19), 3717-3720. doi:10.1021/ol071366k es_ES
dc.description.references Mallat, T., Orglmeister, E., & Baiker, A. (2007). Asymmetric Catalysis at Chiral Metal Surfaces. Chemical Reviews, 107(11), 4863-4890. doi:10.1021/cr0683663 es_ES
dc.description.references Humblot, V., Haq, S., Muryn, C., Hofer, W. A., & Raval, R. (2002). From Local Adsorption Stresses to Chiral Surfaces:  (R,R)-Tartaric Acid on Ni(110). Journal of the American Chemical Society, 124(3), 503-510. doi:10.1021/ja012021e es_ES
dc.description.references Ma, L., Falkowski, J. M., Abney, C., & Lin, W. (2010). A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chemistry, 2(10), 838-846. doi:10.1038/nchem.738 es_ES
dc.description.references Moreau, J. J. E., Vellutini, L., Wong Chi Man, M., & Bied, C. (2001). New Hybrid Organic−Inorganic Solids with Helical Morphology via H-Bond Mediated Sol−Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)- or (S,S)-Diureidocyclohexane. Journal of the American Chemical Society, 123(7), 1509-1510. doi:10.1021/ja003843z es_ES
dc.description.references Yang, Q., Han, D., Yang, H., & Li, C. (2008). Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry - An Asian Journal, 3(8-9), 1214-1229. doi:10.1002/asia.200800110 es_ES
dc.description.references Corma, A., Iborra, S., Rodríguez, I., Iglesias, M., & Sánchez, F. (2002). Catalysis Letters, 82(3/4), 237-242. doi:10.1023/a:1020531315091 es_ES
dc.description.references Monge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516a es_ES
dc.description.references Luanphaisarnnont, T., Hanprasit, S., Somjit, V., & Ervithayasuporn, V. (2017). Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions. Catalysis Letters, 148(2), 779-786. doi:10.1007/s10562-017-2286-z es_ES
dc.description.references List, B., Lerner, R. A., & Barbas, C. F. (2000). Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society, 122(10), 2395-2396. doi:10.1021/ja994280y es_ES
dc.description.references Hickmott, P. W. (1982). Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects—I. Tetrahedron, 38(14), 1975-2050. doi:10.1016/0040-4020(82)85149-1 es_ES
dc.description.references List, B. (2006). The ying and yang of asymmetric aminocatalysis. Chemical Communications, (8), 819. doi:10.1039/b514296m es_ES
dc.description.references Palomo, C., & Mielgo, A. (2006). Diarylprolinol Ethers: Expanding the Potential of Enamine/Iminium-Ion Catalysis. Angewandte Chemie International Edition, 45(47), 7876-7880. doi:10.1002/anie.200602943 es_ES
dc.description.references Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie, 117(9), 1393-1395. doi:10.1002/ange.200461959 es_ES
dc.description.references Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie International Edition, 44(9), 1369-1371. doi:10.1002/anie.200461959 es_ES
dc.description.references Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie, 117(27), 4284-4287. doi:10.1002/ange.200500599 es_ES
dc.description.references Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie International Edition, 44(27), 4212-4215. doi:10.1002/anie.200500599 es_ES
dc.description.references Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie, 118(36), 6130-6133. doi:10.1002/ange.200602207 es_ES
dc.description.references Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie International Edition, 45(36), 5984-5987. doi:10.1002/anie.200602207 es_ES
dc.description.references Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catalysis, 5(3), 1972-1985. doi:10.1021/acscatal.5b00002 es_ES
dc.description.references Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., & Noto, R. (2011). Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions. Catalysis Communications, 16(1), 75-80. doi:10.1016/j.catcom.2011.08.040 es_ES
dc.description.references A. Berkessel and H.Gröger , Asymmetric Organocatalysis: From Biomemetic Concepts to Applications in Asymmetric Synthesis , Wiley-VCH , Weinheim , 2005 es_ES
dc.description.references Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877. doi:10.1002/1099-0690(200206)2002:12<1877::aid-ejoc1877>3.0.co;2-u es_ES
dc.description.references S. J. Gregg and K. S. W.Sing , Adsorption, Surface Area and Porosity , Academic Press , 2nd edn, 1982 es_ES
dc.description.references Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Gray, D., Concellón, C., & Gallagher, T. (2004). Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters. The Journal of Organic Chemistry, 69(14), 4849-4851. doi:10.1021/jo049562h es_ES
dc.description.references Orliac, A., Routier, J., Burgat Charvillon, F., Sauer, W. H. B., Bombrun, A., Kulkarni, S. S., … Cossy, J. (2014). Enantioselective Synthesis and Physicochemical Properties of Libraries of 3-Amino- and 3-Amidofluoropiperidines. Chemistry - A European Journal, 20(13), 3813-3824. doi:10.1002/chem.201302423 es_ES
dc.description.references Kovačková, S., Dračínský, M., & Rejman, D. (2011). The synthesis of piperidine nucleoside analogs—a comparison of several methods to access the introduction of nucleobases. Tetrahedron, 67(7), 1485-1500. doi:10.1016/j.tet.2010.12.029 es_ES
dc.description.references Heindl, C., Hübner, H., & Gmeiner, P. (2003). Enantiospecific synthesis and receptor binding of novel dopamine receptor ligands employing natural 4-hydroxyproline as a practical and flexible building block. Tetrahedron: Asymmetry, 14(20), 3153-3172. doi:10.1016/j.tetasy.2003.08.020 es_ES
dc.description.references Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions:  Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol0167006 es_ES
dc.description.references Alexakis, A., & Andrey, O. (2002). Diamine-Catalyzed Asymmetric Michael Additions of Aldehydes and Ketones to Nitrostyrene. Organic Letters, 4(21), 3611-3614. doi:10.1021/ol026543q es_ES
dc.description.references Andrey, O., Alexakis, A., Tomassini, A., & Bernardinelli, G. (2004). The Use ofN-Alkyl-2,2′-bipyrrolidine Derivatives as Organocatalysts for the Asymmetric Michael Addition of Ketones and Aldehydes to Nitroolefins. Advanced Synthesis & Catalysis, 346(910), 1147-1168. doi:10.1002/adsc.200404037 es_ES
dc.description.references Barros, M. T., & Faísca Phillips, A. M. (2007). Chiral Piperazines as Efficient Catalysts for the Asymmetric Michael Addition of Aldehydes to Nitroalkenes. European Journal of Organic Chemistry, 2007(1), 178-185. doi:10.1002/ejoc.200600731 es_ES
dc.description.references Lu, D., Gong, Y., & Wang, W. (2010). Prolylprolinol-Catalyzed Asymmetric Michael Addition of Aliphatic Aldehydes to Nitroalkenes. Advanced Synthesis & Catalysis, 352(4), 644-650. doi:10.1002/adsc.200900687 es_ES
dc.description.references Wang, W.-H., Abe, T., Wang, X.-B., Kodama, K., Hirose, T., & Zhang, G.-Y. (2010). Self-assembled proline-amino thioureas as efficient organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron: Asymmetry, 21(24), 2925-2933. doi:10.1016/j.tetasy.2010.11.025 es_ES
dc.description.references Sagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746 es_ES
dc.description.references Patora-Komisarska, K., Benohoud, M., Ishikawa, H., Seebach, D., & Hayashi, Y. (2011). Organocatalyzed Michael Addition of Aldehydes to Nitro Alkenes - Generally Accepted Mechanism Revisited and Revised. Helvetica Chimica Acta, 94(5), 719-745. doi:10.1002/hlca.201100122 es_ES
dc.description.references Bolm, C., Rantanen, T., Schiffers, I., & Zani, L. (2005). Protonated Chiral Catalysts: Versatile Tools for Asymmetric Synthesis. Angewandte Chemie International Edition, 44(12), 1758-1763. doi:10.1002/anie.200500154 es_ES
dc.description.references Sulzer-Mossé, S., & Alexakis, A. (2007). Chiral amines as organocatalysts for asymmetric conjugate addition to nitroolefins and vinyl sulfones via enamine activation. Chemical Communications, (30), 3123. doi:10.1039/b701216k es_ES
dc.description.references Li, P., Wang, L., Wang, M., & Zhang, Y. (2008). Polymer-Immobilized Pyrrolidine-Based Chiral Ionic Liquids as Recyclable Organocatalysts for Asymmetric Michael Additions to Nitrostyrenes under Solvent-Free Reaction Conditions. European Journal of Organic Chemistry, 2008(7), 1157-1160. doi:10.1002/ejoc.200701037 es_ES
dc.description.references Androvič, L., Drabina, P., Svobodová, M., & Sedlák, M. (2016). Polystyrene supported benzoylthiourea—pyrrolidine organocatalyst for the enantioselective Michael addition. Tetrahedron: Asymmetry, 27(16), 782-787. doi:10.1016/j.tetasy.2016.06.015 es_ES
dc.description.references M. Omar, E., Dhungana, K., D. Headley, A., & Basyaruddin Abdul Rahman, M. (2011). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide for Asymmetric Michael Addition Reactions of Aldehydes with Nitroolefins. Letters in Organic Chemistry, 8(3), 170-175. doi:10.2174/157017811795038395 es_ES
dc.description.references Ni, B., Zhang, Q., Dhungana, K., & Headley, A. D. (2009). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the Highly Enantioselective Michael Addition to Nitroolefins. Organic Letters, 11(4), 1037-1040. doi:10.1021/ol900003e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem