Mostrar el registro sencillo del ítem
dc.contributor.author | Llopis-Perez, Sebastian | es_ES |
dc.contributor.author | Garcia Fernandez, Maria Teresa | es_ES |
dc.contributor.author | Cantin, A. | es_ES |
dc.contributor.author | Velty, Alexandra | es_ES |
dc.contributor.author | Díaz Morales, Urbano Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2020-07-07T03:33:00Z | |
dc.date.available | 2020-07-07T03:33:00Z | |
dc.date.issued | 2018-11-11 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147531 | |
dc.description.abstract | [EN] A new chiral mesoporous hybrid material was synthesized based on pyrrolidine units included in a siliceous framework, HybPyr, and integrated into the organic-inorganic structure, from a specific bis-silylated precursor. A fluoride sol-gel methodology under soft synthesis conditions and in the absence of sophisticated structural directing agents allowed the generation of a mesoporous architecture with a homogeneous distribution of active chiral moieties along the network. The hybrid material was studied by means of different characterization techniques (TGA, NMR and IR spectroscopy, chemical and elemental analyses, TEM, and textural measurements), verifying the stability and integrity of the asymmetric active sites in the solid. The hybrid material, HybPyr, is an excellent asymmetric heterogeneous and recyclable catalyst for enantioselective Michael addition of linear aldehydes to -nitrostyrene derivatives with high stereocontrol of the reaction products. | es_ES |
dc.description.sponsorship | The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. S. Ll. thanks predoctoral fellowships from MINECO for economical support (BES-2015-072627). The authors thank the MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). The European Union is also acknowledged by ERC-AdG-2014-671093-SynCatMatch. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8cy01650j | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-072627/ES/BES-2015-072627/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Llopis-Perez, S.; Garcia Fernandez, MT.; Cantin, A.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2018). Chiral hybrid materials based on pyrrolidine building units to perform asymmetric Michael additions with high stereocontrol. Catalysis Science & Technology. 8(22):5835-5847. https://doi.org/10.1039/c8cy01650j | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8cy01650j | es_ES |
dc.description.upvformatpinicio | 5835 | es_ES |
dc.description.upvformatpfin | 5847 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 22 | es_ES |
dc.identifier.pmid | 30713656 | es_ES |
dc.identifier.pmcid | PMC6333262 | es_ES |
dc.relation.pasarela | S\383037 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | R. E. Gawley and J.Aub , Principles of Asymmetric Synthesis , Elsevier , 2012 | es_ES |
dc.description.references | Hultzsch, K. (2005). Transition Metal-Catalyzed Asymmetric Hydroamination of Alkenes (AHA). Advanced Synthesis & Catalysis, 347(2-3), 367-391. doi:10.1002/adsc.200404261 | es_ES |
dc.description.references | Giri, R., Shi, B.-F., Engle, K. M., Maugel, N., & Yu, J.-Q. (2009). Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chemical Society Reviews, 38(11), 3242. doi:10.1039/b816707a | es_ES |
dc.description.references | Machajewski, T. D., & Wong, C.-H. (2000). The Catalytic Asymmetric Aldol Reaction. Angewandte Chemie International Edition, 39(8), 1352-1375. doi:10.1002/(sici)1521-3773(20000417)39:8<1352::aid-anie1352>3.0.co;2-j | es_ES |
dc.description.references | K. Drauz and H.Waldmann , Enzyme Catalysis in Organic Synthesis , WCH , Weinheim , 1995 | es_ES |
dc.description.references | Dalko, P. I., & Moisan, L. (2004). In the Golden Age of Organocatalysis. Angewandte Chemie International Edition, 43(39), 5138-5175. doi:10.1002/anie.200400650 | es_ES |
dc.description.references | Houk, K. N., & List, B. (2004). Asymmetric Organocatalysis. Accounts of Chemical Research, 37(8), 487-487. doi:10.1021/ar040216w | es_ES |
dc.description.references | Notz, W., Tanaka, F., & Barbas, C. F. (2004). Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Accounts of Chemical Research, 37(8), 580-591. doi:10.1021/ar0300468 | es_ES |
dc.description.references | Chiroli, V., Benaglia, M., Puglisi, A., Porta, R., Jumde, R. P., & Mandoli, A. (2014). A chiral organocatalytic polymer-based monolithic reactor. Green Chemistry, 16(5), 2798. doi:10.1039/c4gc00031e | es_ES |
dc.description.references | R. A. Sheldon and van H.Bekkum , Fine Chemicals through Heterogeneous Catalysis , Wiley-VCH Verlag GmbH , Weinheim , 2001 | es_ES |
dc.description.references | H. F. Rase , Handbook of Commercial Catalysts: Heterogeneous Catalysts , CRC Press , New York , 2000 | es_ES |
dc.description.references | Hallman, K., & Moberg, C. (2001). Polymer-bound bis(oxazoline) as a chiral catalyst. Tetrahedron: Asymmetry, 12(10), 1475-1478. doi:10.1016/s0957-4166(01)00245-2 | es_ES |
dc.description.references | Clarke, R. J., & Shannon, I. J. (2001). Mesopore immobilised copper bis(oxazoline) complexes for enantioselective catalysis. Chemical Communications, (19), 1936-1937. doi:10.1039/b105655g | es_ES |
dc.description.references | Bigi, F., Moroni, L., Maggi, R., & Sartori, G. (2002). Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(iii) complexes supported on amorphous or MCM-41 silica through a new triazine-based linkerElectronic supplementary information (ESI) available: synthesis of compounds 1, 3A, 3B, 4A, 4B and 1H NMR spectra. See http://www.rsc.org/suppdata/cc/b1/b110991j/. Chemical Communications, (7), 716-717. doi:10.1039/b110991j | es_ES |
dc.description.references | Alza, E., Cambeiro, X. C., Jimeno, C., & Pericàs, M. A. (2007). Highly Enantioselective Michael Additions in Water Catalyzed by a PS-Supported Pyrrolidine. Organic Letters, 9(19), 3717-3720. doi:10.1021/ol071366k | es_ES |
dc.description.references | Mallat, T., Orglmeister, E., & Baiker, A. (2007). Asymmetric Catalysis at Chiral Metal Surfaces. Chemical Reviews, 107(11), 4863-4890. doi:10.1021/cr0683663 | es_ES |
dc.description.references | Humblot, V., Haq, S., Muryn, C., Hofer, W. A., & Raval, R. (2002). From Local Adsorption Stresses to Chiral Surfaces: (R,R)-Tartaric Acid on Ni(110). Journal of the American Chemical Society, 124(3), 503-510. doi:10.1021/ja012021e | es_ES |
dc.description.references | Ma, L., Falkowski, J. M., Abney, C., & Lin, W. (2010). A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chemistry, 2(10), 838-846. doi:10.1038/nchem.738 | es_ES |
dc.description.references | Moreau, J. J. E., Vellutini, L., Wong Chi Man, M., & Bied, C. (2001). New Hybrid Organic−Inorganic Solids with Helical Morphology via H-Bond Mediated Sol−Gel Hydrolysis of Silyl Derivatives of Chiral (R,R)- or (S,S)-Diureidocyclohexane. Journal of the American Chemical Society, 123(7), 1509-1510. doi:10.1021/ja003843z | es_ES |
dc.description.references | Yang, Q., Han, D., Yang, H., & Li, C. (2008). Asymmetric Catalysis with Metal Complexes in Nanoreactors. Chemistry - An Asian Journal, 3(8-9), 1214-1229. doi:10.1002/asia.200800110 | es_ES |
dc.description.references | Corma, A., Iborra, S., Rodríguez, I., Iglesias, M., & Sánchez, F. (2002). Catalysis Letters, 82(3/4), 237-242. doi:10.1023/a:1020531315091 | es_ES |
dc.description.references | Monge-Marcet, A., Pleixats, R., Cattoën, X., Man, M. W. C., Alonso, D. A., & Nájera, C. (2011). Prolinamide bridged silsesquioxane as an efficient, eco-compatible and recyclable chiral organocatalyst. New Journal of Chemistry, 35(12), 2766. doi:10.1039/c1nj20516a | es_ES |
dc.description.references | Luanphaisarnnont, T., Hanprasit, S., Somjit, V., & Ervithayasuporn, V. (2017). Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions. Catalysis Letters, 148(2), 779-786. doi:10.1007/s10562-017-2286-z | es_ES |
dc.description.references | List, B., Lerner, R. A., & Barbas, C. F. (2000). Proline-Catalyzed Direct Asymmetric Aldol Reactions. Journal of the American Chemical Society, 122(10), 2395-2396. doi:10.1021/ja994280y | es_ES |
dc.description.references | Hickmott, P. W. (1982). Enamines: recent advances in synthetic, spectroscopic, mechanistic, and stereochemical aspects—I. Tetrahedron, 38(14), 1975-2050. doi:10.1016/0040-4020(82)85149-1 | es_ES |
dc.description.references | List, B. (2006). The ying and yang of asymmetric aminocatalysis. Chemical Communications, (8), 819. doi:10.1039/b514296m | es_ES |
dc.description.references | Palomo, C., & Mielgo, A. (2006). Diarylprolinol Ethers: Expanding the Potential of Enamine/Iminium-Ion Catalysis. Angewandte Chemie International Edition, 45(47), 7876-7880. doi:10.1002/anie.200602943 | es_ES |
dc.description.references | Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie, 117(9), 1393-1395. doi:10.1002/ange.200461959 | es_ES |
dc.description.references | Wang, W., Wang, J., & Li, H. (2005). Direct, Highly Enantioselective Pyrrolidine Sulfonamide Catalyzed Michael Addition of Aldehydes to Nitrostyrenes. Angewandte Chemie International Edition, 44(9), 1369-1371. doi:10.1002/anie.200461959 | es_ES |
dc.description.references | Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie, 117(27), 4284-4287. doi:10.1002/ange.200500599 | es_ES |
dc.description.references | Hayashi, Y., Gotoh, H., Hayashi, T., & Shoji, M. (2005). Diphenylprolinol Silyl Ethers as Efficient Organocatalysts for the Asymmetric Michael Reaction of Aldehydes and Nitroalkenes. Angewandte Chemie International Edition, 44(27), 4212-4215. doi:10.1002/anie.200500599 | es_ES |
dc.description.references | Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie, 118(36), 6130-6133. doi:10.1002/ange.200602207 | es_ES |
dc.description.references | Palomo, C., Vera, S., Mielgo, A., & Gómez-Bengoa, E. (2006). Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie International Edition, 45(36), 5984-5987. doi:10.1002/anie.200602207 | es_ES |
dc.description.references | Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric Organocatalysis in Continuous Flow: Opportunities for Impacting Industrial Catalysis. ACS Catalysis, 5(3), 1972-1985. doi:10.1021/acscatal.5b00002 | es_ES |
dc.description.references | Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., & Noto, R. (2011). Polystyrene-supported organocatalysts for α-selenenylation and Michael reactions. Catalysis Communications, 16(1), 75-80. doi:10.1016/j.catcom.2011.08.040 | es_ES |
dc.description.references | A. Berkessel and H.Gröger , Asymmetric Organocatalysis: From Biomemetic Concepts to Applications in Asymmetric Synthesis , Wiley-VCH , Weinheim , 2005 | es_ES |
dc.description.references | Berner, O. M., Tedeschi, L., & Enders, D. (2002). Asymmetric Michael Additions to Nitroalkenes. European Journal of Organic Chemistry, 2002(12), 1877. doi:10.1002/1099-0690(200206)2002:12<1877::aid-ejoc1877>3.0.co;2-u | es_ES |
dc.description.references | S. J. Gregg and K. S. W.Sing , Adsorption, Surface Area and Porosity , Academic Press , 2nd edn, 1982 | es_ES |
dc.description.references | Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 | es_ES |
dc.description.references | Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 | es_ES |
dc.description.references | Gray, D., Concellón, C., & Gallagher, T. (2004). Kowalski Ester Homologation. Application to the Synthesis of β-Amino Esters. The Journal of Organic Chemistry, 69(14), 4849-4851. doi:10.1021/jo049562h | es_ES |
dc.description.references | Orliac, A., Routier, J., Burgat Charvillon, F., Sauer, W. H. B., Bombrun, A., Kulkarni, S. S., … Cossy, J. (2014). Enantioselective Synthesis and Physicochemical Properties of Libraries of 3-Amino- and 3-Amidofluoropiperidines. Chemistry - A European Journal, 20(13), 3813-3824. doi:10.1002/chem.201302423 | es_ES |
dc.description.references | Kovačková, S., Dračínský, M., & Rejman, D. (2011). The synthesis of piperidine nucleoside analogs—a comparison of several methods to access the introduction of nucleobases. Tetrahedron, 67(7), 1485-1500. doi:10.1016/j.tet.2010.12.029 | es_ES |
dc.description.references | Heindl, C., Hübner, H., & Gmeiner, P. (2003). Enantiospecific synthesis and receptor binding of novel dopamine receptor ligands employing natural 4-hydroxyproline as a practical and flexible building block. Tetrahedron: Asymmetry, 14(20), 3153-3172. doi:10.1016/j.tetasy.2003.08.020 | es_ES |
dc.description.references | Betancort, J. M., & Barbas, C. F. (2001). Catalytic Direct Asymmetric Michael Reactions: Taming Naked Aldehyde Donors. Organic Letters, 3(23), 3737-3740. doi:10.1021/ol0167006 | es_ES |
dc.description.references | Alexakis, A., & Andrey, O. (2002). Diamine-Catalyzed Asymmetric Michael Additions of Aldehydes and Ketones to Nitrostyrene. Organic Letters, 4(21), 3611-3614. doi:10.1021/ol026543q | es_ES |
dc.description.references | Andrey, O., Alexakis, A., Tomassini, A., & Bernardinelli, G. (2004). The Use ofN-Alkyl-2,2′-bipyrrolidine Derivatives as Organocatalysts for the Asymmetric Michael Addition of Ketones and Aldehydes to Nitroolefins. Advanced Synthesis & Catalysis, 346(910), 1147-1168. doi:10.1002/adsc.200404037 | es_ES |
dc.description.references | Barros, M. T., & Faísca Phillips, A. M. (2007). Chiral Piperazines as Efficient Catalysts for the Asymmetric Michael Addition of Aldehydes to Nitroalkenes. European Journal of Organic Chemistry, 2007(1), 178-185. doi:10.1002/ejoc.200600731 | es_ES |
dc.description.references | Lu, D., Gong, Y., & Wang, W. (2010). Prolylprolinol-Catalyzed Asymmetric Michael Addition of Aliphatic Aldehydes to Nitroalkenes. Advanced Synthesis & Catalysis, 352(4), 644-650. doi:10.1002/adsc.200900687 | es_ES |
dc.description.references | Wang, W.-H., Abe, T., Wang, X.-B., Kodama, K., Hirose, T., & Zhang, G.-Y. (2010). Self-assembled proline-amino thioureas as efficient organocatalysts for the asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron: Asymmetry, 21(24), 2925-2933. doi:10.1016/j.tetasy.2010.11.025 | es_ES |
dc.description.references | Sagamanova, I., Rodríguez-Escrich, C., Molnár, I. G., Sayalero, S., Gilmour, R., & Pericàs, M. A. (2015). Translating the Enantioselective Michael Reaction to a Continuous Flow Paradigm with an Immobilized, Fluorinated Organocatalyst. ACS Catalysis, 5(11), 6241-6248. doi:10.1021/acscatal.5b01746 | es_ES |
dc.description.references | Patora-Komisarska, K., Benohoud, M., Ishikawa, H., Seebach, D., & Hayashi, Y. (2011). Organocatalyzed Michael Addition of Aldehydes to Nitro Alkenes - Generally Accepted Mechanism Revisited and Revised. Helvetica Chimica Acta, 94(5), 719-745. doi:10.1002/hlca.201100122 | es_ES |
dc.description.references | Bolm, C., Rantanen, T., Schiffers, I., & Zani, L. (2005). Protonated Chiral Catalysts: Versatile Tools for Asymmetric Synthesis. Angewandte Chemie International Edition, 44(12), 1758-1763. doi:10.1002/anie.200500154 | es_ES |
dc.description.references | Sulzer-Mossé, S., & Alexakis, A. (2007). Chiral amines as organocatalysts for asymmetric conjugate addition to nitroolefins and vinyl sulfones via enamine activation. Chemical Communications, (30), 3123. doi:10.1039/b701216k | es_ES |
dc.description.references | Li, P., Wang, L., Wang, M., & Zhang, Y. (2008). Polymer-Immobilized Pyrrolidine-Based Chiral Ionic Liquids as Recyclable Organocatalysts for Asymmetric Michael Additions to Nitrostyrenes under Solvent-Free Reaction Conditions. European Journal of Organic Chemistry, 2008(7), 1157-1160. doi:10.1002/ejoc.200701037 | es_ES |
dc.description.references | Androvič, L., Drabina, P., Svobodová, M., & Sedlák, M. (2016). Polystyrene supported benzoylthiourea—pyrrolidine organocatalyst for the enantioselective Michael addition. Tetrahedron: Asymmetry, 27(16), 782-787. doi:10.1016/j.tetasy.2016.06.015 | es_ES |
dc.description.references | M. Omar, E., Dhungana, K., D. Headley, A., & Basyaruddin Abdul Rahman, M. (2011). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide for Asymmetric Michael Addition Reactions of Aldehydes with Nitroolefins. Letters in Organic Chemistry, 8(3), 170-175. doi:10.2174/157017811795038395 | es_ES |
dc.description.references | Ni, B., Zhang, Q., Dhungana, K., & Headley, A. D. (2009). Ionic Liquid-Supported (ILS) (S)-Pyrrolidine Sulfonamide, a Recyclable Organocatalyst for the Highly Enantioselective Michael Addition to Nitroolefins. Organic Letters, 11(4), 1037-1040. doi:10.1021/ol900003e | es_ES |