- -

Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol

Mostrar el registro completo del ítem

Benomar, S.; Masso Ramírez, A.; Solsona Espriu, BE.; Isaadi, R.; López Nieto, JM. (2018). Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol. Catalysts. 8(4):1-18. https://doi.org/10.3390/catal8040126

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147629

Ficheros en el ítem

Metadatos del ítem

Título: Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol
Autor: Benomar, S. Masso Ramírez, Amada Solsona Espriu, Benjamin Eduardo Isaadi, R. López Nieto, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Vanadium supported on pure (Al2O3, ZrO2) or mixed zirconia-alumina (with Al/(Al + Zr) ratio of 0.75 or 0.25) catalysts have been prepared by wet impregnation, using homemade prepared supports. The catalysts have been ...[+]
Palabras clave: ODH of ethane , Ethylene , Methanol transformation , Formaldehyde , Dimethyl ether , Vanadium , Zirconia , Alumina
Derechos de uso: Reconocimiento (by)
Fuente:
Catalysts. (eissn: 2073-4344 )
DOI: 10.3390/catal8040126
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/catal8040126
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84118-C2-1-R/ES/VALORIZACION DE RECURSOS NATURALES COMO NUEVOS MATERIALES AVANZADOS :APLICACIONES CATALITICAS Y ELECTROQUIMICAS/
info:eu-repo/grantAgreement/MAEC//AP%2F040992%2F11/ES/PREPARACIÓN, CARACTERIZACIÓN Y PROPIEDADES CATALÍTICAS PARA REACCIONES CATALÍTICAS SOSTENIBLES/
info:eu-repo/grantAgreement/UV//INV-AE16-484416/
info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/
Agradecimientos:
The authors would like to acknowledge the DGICYT (CTQ2015-68951-C3-1-R and MAT2017-84118-C2-1-R projects), the Secretary of State for International Cooperation in Spain (Project AP/040992/11) and FEDER for financial support. ...[+]
Tipo: Artículo

References

Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003

Nieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-4

Wachs, I. E. (2013). Catalysis science of supported vanadium oxide catalysts. Dalton Transactions, 42(33), 11762. doi:10.1039/c3dt50692d [+]
Chieregato, A., López Nieto, J. M., & Cavani, F. (2015). Mixed-oxide catalysts with vanadium as the key element for gas-phase reactions. Coordination Chemistry Reviews, 301-302, 3-23. doi:10.1016/j.ccr.2014.12.003

Nieto, J. M. L. (2006). The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts. Topics in Catalysis, 41(1-4), 3-15. doi:10.1007/s11244-006-0088-4

Wachs, I. E. (2013). Catalysis science of supported vanadium oxide catalysts. Dalton Transactions, 42(33), 11762. doi:10.1039/c3dt50692d

James, O. O., Mandal, S., Alele, N., Chowdhury, B., & Maity, S. (2016). Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 149, 239-255. doi:10.1016/j.fuproc.2016.04.016

Blasco, T., & Nieto, J. M. L. (1997). Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Applied Catalysis A: General, 157(1-2), 117-142. doi:10.1016/s0926-860x(97)00029-x

Kung, H. H., & Kung, M. C. (1997). Oxidative dehydrogenation of alkanes over vanadium-magnesium-oxides. Applied Catalysis A: General, 157(1-2), 105-116. doi:10.1016/s0926-860x(97)00028-8

Cavani, F., & Trifirò, F. (1997). Some aspects that affect the selective oxidation of paraffins. Catalysis Today, 36(4), 431-439. doi:10.1016/s0920-5861(96)00234-9

Bañares, M. A. (1999). Supported metal oxide and other catalysts for ethane conversion: a review. Catalysis Today, 51(2), 319-348. doi:10.1016/s0920-5861(99)00053-x

Bhasin, M. ., McCain, J. ., Vora, B. ., Imai, T., & Pujadó, P. . (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Applied Catalysis A: General, 221(1-2), 397-419. doi:10.1016/s0926-860x(01)00816-x

Cavani, F., Ballarini, N., & Cericola, A. (2007). Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today, 127(1-4), 113-131. doi:10.1016/j.cattod.2007.05.009

Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 5(11), 3196-3217. doi:10.1002/cctc.201200966

Galli, A., López Nieto, J. M., Dejoz, A., & Vazquez, M. I. (1995). The effect of potassium on the selective oxidation ofn-butane and ethane over Al2O3-supported vanadia catalysts. Catalysis Letters, 34(1-2), 51-58. doi:10.1007/bf00808321

Argyle, M. D., Chen, K., Bell, A. T., & Iglesia, E. (2002). Ethane Oxidative Dehydrogenation Pathways on Vanadium Oxide Catalysts. The Journal of Physical Chemistry B, 106(21), 5421-5427. doi:10.1021/jp0144552

Dinse, A., Ozarowski, A., Hess, C., Schomäcker, R., & Dinse, K.-P. (2008). Potential of High-Frequency EPR for Investigation of Supported Vanadium Oxide Catalysts. The Journal of Physical Chemistry C, 112(45), 17664-17671. doi:10.1021/jp807159f

Chen, K., Bell, A. T., & Iglesia, E. (2002). The Relationship between the Electronic and Redox Properties of Dispersed Metal Oxides and Their Turnover Rates in Oxidative Dehydrogenation Reactions. Journal of Catalysis, 209(1), 35-42. doi:10.1006/jcat.2002.3620

López Nieto, J. M., Soler, J., Concepción, P., Herguido, J., Menéndez, M., & Santamarı́a, J. (1999). Oxidative Dehydrogenation of Alkanes over V-based Catalysts: Influence of Redox Properties on Catalytic Performance. Journal of Catalysis, 185(2), 324-332. doi:10.1006/jcat.1999.2467

Argyle, M. D., Chen, K., Iglesia, E., & Bell, A. T. (2005). In situ UV−Visible Spectroscopic Measurements of Kinetic Parameters and Active Sites for Catalytic Oxidation of Alkanes on Vanadium Oxides†. The Journal of Physical Chemistry B, 109(6), 2414-2420. doi:10.1021/jp040166c

Al-Ghamdi, S. A., & de Lasa, H. I. (2014). Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst. Fuel, 128, 120-140. doi:10.1016/j.fuel.2014.02.033

SOLSONA, B., DEJOZ, A., GARCIA, T., CONCEPCION, P., NIETO, J., VAZQUEZ, M., & NAVARRO, M. (2006). Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 117(1-3), 228-233. doi:10.1016/j.cattod.2006.05.025

Chen, S., Ma, F., Xu, A., Wang, L., Chen, F., & Lu, W. (2014). Study on the structure, acidic properties of V–Zr nanocrystal catalysts in oxidative dehydrogenation of propane. Applied Surface Science, 289, 316-325. doi:10.1016/j.apsusc.2013.10.158

Elbadawi, A. H., Ba-Shammakh, M. S., Al-Ghamdi, S., Razzak, S. A., & Hossain, M. M. (2016). Reduction kinetics and catalytic activity of VO x /γ-Al 2 O 3 -ZrO 2 for gas phase oxygen free ODH of ethane. Chemical Engineering Journal, 284, 448-457. doi:10.1016/j.cej.2015.08.048

Rostom, S., & de Lasa, H. I. (2017). Propane Oxidative Dehydrogenation Using Consecutive Feed Injections and Fluidizable VOx/γAl2O3 and VOx/ZrO2–γAl2O3 Catalysts. Industrial & Engineering Chemistry Research, 56(45), 13109-13124. doi:10.1021/acs.iecr.7b01369

HERACLEOUS, E., & LEMONIDOU, A. (2006). Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part I: Characterization and catalytic performance. Journal of Catalysis, 237(1), 162-174. doi:10.1016/j.jcat.2005.11.002

Skoufa, Z., Heracleous, E., & Lemonidou, A. A. (2015). On ethane ODH mechanism and nature of active sites over NiO-based catalysts via isotopic labeling and methanol sorption studies. Journal of Catalysis, 322, 118-129. doi:10.1016/j.jcat.2014.11.014

Ipsakis, D., Heracleous, E., Silvester, L., Bukur, D. B., & Lemonidou, A. A. (2017). Reduction and oxidation kinetic modeling of NiO-based oxygen transfer materials. Chemical Engineering Journal, 308, 840-852. doi:10.1016/j.cej.2016.09.114

Delgado, D., Solsona, B., Ykrelef, A., Rodríguez-Gómez, A., Caballero, A., Rodríguez-Aguado, E., … López Nieto, J. M. (2017). Redox and Catalytic Properties of Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. The Journal of Physical Chemistry C, 121(45), 25132-25142. doi:10.1021/acs.jpcc.7b07066

Solsona, B., Concepción, P., López Nieto, J. M., Dejoz, A., Cecilia, J. A., Agouram, S., … Rodríguez Castellón, E. (2016). Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science & Technology, 6(10), 3419-3429. doi:10.1039/c5cy01811k

Gärtner, C. A., van Veen, A. C., & Lercher, J. A. (2014). Oxidative Dehydrogenation of Ethane on Dynamically Rearranging Supported Chloride Catalysts. Journal of the American Chemical Society, 136(36), 12691-12701. doi:10.1021/ja505411s

Tatibouët, J. M. (1997). Methanol oxidation as a catalytic surface probe. Applied Catalysis A: General, 148(2), 213-252. doi:10.1016/s0926-860x(96)00236-0

Forzatti, P., Tronconi, E., Elmi, A. S., & Busca, G. (1997). Methanol oxidation over vanadia-based catalysts. Applied Catalysis A: General, 157(1-2), 387-408. doi:10.1016/s0926-860x(97)00026-4

Wachs, I. E., Chen, Y., Jehng, J.-M., Briand, L. E., & Tanaka, T. (2003). Molecular structure and reactivity of the Group V metal oxides. Catalysis Today, 78(1-4), 13-24. doi:10.1016/s0920-5861(02)00337-1

Shah, P. R., Baldychev, I., Vohs, J. M., & Gorte, R. J. (2009). Comparison of redox isotherms for vanadia supported on zirconia and titania. Applied Catalysis A: General, 361(1-2), 13-17. doi:10.1016/j.apcata.2009.03.036

Baldychev, I., Gorte, R. J., & Vohs, J. M. (2010). The impact of redox properties on the reactivity of V2O5/Al2O3 catalysts. Journal of Catalysis, 269(2), 397-403. doi:10.1016/j.jcat.2009.11.022

Hess, C. (2009). Nanostructured Vanadium Oxide Model Catalysts for Selective Oxidation Reactions. ChemPhysChem, 10(2), 319-326. doi:10.1002/cphc.200800585

Smith, M. A., Zoelle, A., Yang, Y., Rioux, R. M., Hamilton, N. G., Amakawa, K., … Trunschke, A. (2014). Surface roughness effects in the catalytic behavior of vanadia supported on SBA-15. Journal of Catalysis, 312, 170-178. doi:10.1016/j.jcat.2014.01.011

Wang, N., Qiu, J., Wu, J., You, K., & Luo, H. (2015). A Comparison of the Redox Properties of Bulk Vanadium Mixed Oxide Catalysts. Catalysis Letters, 145(9), 1792-1797. doi:10.1007/s10562-015-1584-6

Beck, B., Harth, M., Hamilton, N. G., Carrero, C., Uhlrich, J. J., Trunschke, A., … Schomäcker, R. (2012). Partial oxidation of ethanol on vanadia catalysts on supporting oxides with different redox properties compared to propane. Journal of Catalysis, 296, 120-131. doi:10.1016/j.jcat.2012.09.008

KIM, T., & WACHS, I. (2008). CH3OH oxidation over well-defined supported V2O5/Al2O3 catalysts: Influence of vanadium oxide loading and surface vanadium–oxygen functionalities. Journal of Catalysis, 255(2), 197-205. doi:10.1016/j.jcat.2008.02.007

Baldychev, I., Vohs, J. M., & Gorte, R. J. (2011). The effect of support on redox properties and methanol-oxidation activity of vanadia catalysts. Applied Catalysis A: General, 391(1-2), 86-91. doi:10.1016/j.apcata.2010.05.051

Zhang, F., Chupas, P. J., Lui, S. L. A., Hanson, J. C., Caliebe, W. A., Lee, P. L., & Chan, S.-W. (2007). In situ Study of the Crystallization from Amorphous to Cubic Zirconium Oxide:  Rietveld and Reverse Monte Carlo Analyses. Chemistry of Materials, 19(13), 3118-3126. doi:10.1021/cm061739w

Pieck, C. L., del Val, S., López Granados, M., Bañares, M. A., & Fierro, J. L. G. (2002). Bulk and Surface Structures of V2O5/ZrO2Systems and Their Relevance foro-Xylene Oxidation. Langmuir, 18(7), 2642-2648. doi:10.1021/la0114631

Soriano, M. D., Rodríguez-Castellón, E., García-González, E., & López Nieto, J. M. (2014). Catalytic behavior of NaV6O15 bronze for partial oxidation of hydrogen sulfide. Catalysis Today, 238, 62-68. doi:10.1016/j.cattod.2014.02.030

Kanervo, J. M., Harlin, M. E., Krause, A. O. I., & Bañares, M. A. (2003). Characterisation of alumina-supported vanadium oxide catalysts by kinetic analysis of H2-TPR data. Catalysis Today, 78(1-4), 171-180. doi:10.1016/s0920-5861(02)00326-7

Hess, C., Tzolova-Müller, G., & Herbert, R. (2007). The Influence of Water on the Dispersion of Vanadia Supported on Silica SBA-15:  A Combined XPS and Raman Study. The Journal of Physical Chemistry C, 111(26), 9471-9479. doi:10.1021/jp0713920

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem