- -

A framework for genomic sequencing on clusters of multicore and manycore processors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A framework for genomic sequencing on clusters of multicore and manycore processors

Mostrar el registro completo del ítem

Martínez, H.; Barrachina, S.; Castillo, M.; Tárraga, J.; Medina, I.; Dopazo, J.; Quintana Ortí, ES. (2018). A framework for genomic sequencing on clusters of multicore and manycore processors. International Journal of High Performance Computing Applications. 32(3):393-406. https://doi.org/10.1177/1094342016653243

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147637

Ficheros en el ítem

Metadatos del ítem

Título: A framework for genomic sequencing on clusters of multicore and manycore processors
Autor: Martínez, Héctor Barrachina, Sergio Castillo, Maribel Tárraga, Joaquín Medina, Ignacio Dopazo, Joaquín Quintana Ortí, Enrique Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] The advances in genomic sequencing during the past few years have motivated the development of fast and reliable software for DNA/RNA sequencing on current high performance architectures. Most of these efforts target ...[+]
Palabras clave: Genomic sequencing , DNA-seq , RNA-seq , High performance computing , Clusters , Multi-threaded architectures
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of High Performance Computing Applications. (issn: 1094-3420 )
DOI: 10.1177/1094342016653243
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1094342016653243
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/MICINN//TIN2011-23283/ES/POWER-AWARE HIGH PERFORMANCE COMPUTING/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The researchers from the University Jaume I were supported by the MINECO/CICYT (grant ...[+]
Tipo: Artículo

References

Biesecker, L. G. (2010). Exome sequencing makes medical genomics a reality. Nature Genetics, 42(1), 13-14. doi:10.1038/ng0110-13

Burrows M, Wheeler D (1994) A block sorting lossless data compression algorithm. Technical report 124, Palo Alto: Digital Equipment Corporation.

Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2009). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6), 1767-1771. doi:10.1093/nar/gkp1137 [+]
Biesecker, L. G. (2010). Exome sequencing makes medical genomics a reality. Nature Genetics, 42(1), 13-14. doi:10.1038/ng0110-13

Burrows M, Wheeler D (1994) A block sorting lossless data compression algorithm. Technical report 124, Palo Alto: Digital Equipment Corporation.

Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L., & Rice, P. M. (2009). The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6), 1767-1771. doi:10.1093/nar/gkp1137

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2012). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. doi:10.1093/bioinformatics/bts635

Ferragina, P., & Manzini, G. (s. f.). Opportunistic data structures with applications. Proceedings 41st Annual Symposium on Foundations of Computer Science. doi:10.1109/sfcs.2000.892127

Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469-477. doi:10.1038/nmeth.1613

Grant, G. R., Farkas, M. H., Pizarro, A. D., Lahens, N. F., Schug, J., Brunk, B. P., … Pierce, E. A. (2011). Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics, 27(18), 2518-2528. doi:10.1093/bioinformatics/btr427

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36

Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923

Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. doi:10.1186/gb-2009-10-3-r25

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

Li, H., & Homer, N. (2010). A survey of sequence alignment algorithms for next-generation sequencing. Briefings in Bioinformatics, 11(5), 473-483. doi:10.1093/bib/bbq015

Yongchao Liu, & Schmidt, B. (2014). CUSHAW2-GPU: Empowering Faster Gapped Short-Read Alignment Using GPU Computing. IEEE Design & Test, 31(1), 31-39. doi:10.1109/mdat.2013.2284198

Liu, Y., Popp, B., & Schmidt, B. (2014). CUSHAW3: Sensitive and Accurate Base-Space and Color-Space Short-Read Alignment with Hybrid Seeding. PLoS ONE, 9(1), e86869. doi:10.1371/journal.pone.0086869

Manber, U., & Myers, G. (1993). Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal on Computing, 22(5), 935-948. doi:10.1137/0222058

Martinez, H., Barrachina, S., Castillo, M., Tarraga, J., Medina, I., Dopazo, J., & Quintana-Orti, E. S. (2015). Scalable RNA Sequencing on Clusters of Multicore Processors. 2015 IEEE Trustcom/BigDataSE/ISPA. doi:10.1109/trustcom.2015.631

Martínez, H., Tárraga, J., Medina, I., Barrachina, S., Castillo, M., Dopazo, J., & Quintana-Ortí, E. S. (2013). A dynamic pipeline for RNA sequencing on multicore processors. Proceedings of the 20th European MPI Users’ Group Meeting on - EuroMPI ’13. doi:10.1145/2488551.2488581

Martinez, H., Tarraga, J., Medina, I., Barrachina, S., Castillo, M., Dopazo, J., & Quintana-Orti, E. S. (2015). Concurrent and Accurate Short Read Mapping on Multicore Processors. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12(5), 995-1007. doi:10.1109/tcbb.2015.2392077

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1), 195-197. doi:10.1016/0022-2836(81)90087-5

Tárraga, J., Arnau, V., Martínez, H., Moreno, R., Cazorla, D., Salavert-Torres, J., … Medina, I. (2014). Acceleration of short and long DNA read mapping without loss of accuracy using suffix array. Bioinformatics, 30(23), 3396-3398. doi:10.1093/bioinformatics/btu553

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., … Liu, J. (2010). MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Research, 38(18), e178-e178. doi:10.1093/nar/gkq622

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem