- -

Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

Show full item record

Delgado, T.; Meneses-Sánchez, M.; Piñeiro-López, L.; Bartual-Murgui, C.; Muñoz Roca, MDC.; Real, J. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science. 9(44):8446-8452. https://doi.org/10.1039/c8sc02677g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147639

Files in this item

Item Metadata

Title: Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer
Author: Delgado, T. Meneses-Sánchez, M. Piñeiro-López, L. Bartual-Murgui, C. Muñoz Roca, María Del Carmen Real, J.A.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical ...[+]
Subjects: FE(ABPT)(2)(NCX)(2) X , State , Transition , Complexes , Behavior , Nanocomposite , Hysteresis , Pressure , Emission , Networks
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc02677g
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c8sc02677g
Project ID:
SNSF/200021-169033
Ministerio de Economía y Competitividad (MINECO)/CTQ2013-46275-P
Generalitat Valenciana/PROMETEO2016/147
Ministerio de Economía, Industria y Competitividad (MINECO)/CTQ2016-78341-P
FEDER/MDM-2015-0538
Thanks:
This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2013-46275-P and CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), Generalitat Valenciana (PROMETEO/2016/147) ...[+]
Type: Artículo

References

Spin Crossover in Transition Metal Compounds I-III. Top. Curr. Chem. , P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235

Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c

Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a [+]
Spin Crossover in Transition Metal Compounds I-III. Top. Curr. Chem. , P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235

Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c

Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a

Spin-crossover materials: properties and applications , ed. M. A. Halcrow , John Wiley & Sons , 2013

Cavallini, M., Bergenti, I., Milita, S., Kengne, J. C., Gentili, D., Ruani, G., … Ruben, M. (2011). Thin Deposits and Patterning of Room-Temperature-Switchable One-Dimensional Spin-Crossover Compounds. Langmuir, 27(7), 4076-4081. doi:10.1021/la104901m

P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , pp. 376–404

Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., & Bousseksou, A. (2017). Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 30(5), 1703862. doi:10.1002/adma.201703862

H. J. Shepherd , C. M.Quintero , G.Molnar , L.Salmon and A.Bousseksou , in Luminescent spin-crossover materials , John Wiley & Sons Ltd. , 2013 , p. 347

Piguet, C., Rivara-Minten, E., Bernardinelli, G., Bünzli, J.-C. G., & Hopfgartner, G. (1997). Non-covalent lanthanide podates with predetermined physicochemical properties: iron(II) spin-state equilibria in self-assembled heterodinuclear d–f supramolecular complexes. Journal of the Chemical Society, Dalton Transactions, (3), 421-434. doi:10.1039/a605986d

Matsuda, M., Isozaki, H., & Tajima, H. (2008). Reproducible on–off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films, 517(4), 1465-1467. doi:10.1016/j.tsf.2008.09.034

Salmon, L., Molnár, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631a

Titos-Padilla, S., Herrera, J. M., Chen, X.-W., Delgado, J. J., & Colacio, E. (2011). Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie International Edition, 50(14), 3290-3293. doi:10.1002/anie.201007847

Quintero, C. M., Gural’skiy, I. A., Salmon, L., Molnár, G., Bergaud, C., & Bousseksou, A. (2012). Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 22(9), 3745. doi:10.1039/c2jm15662h

Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C, 3(19), 5026-5032. doi:10.1039/c5tc00667h

Suleimanov, I., Kraieva, O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Enhanced luminescence stability with a Tb–spin crossover nanocomposite for spin state monitoring. Chemical Communications, 51(82), 15098-15101. doi:10.1039/c5cc06426k

Hasegawa, M., Renz, F., Hara, T., Kikuchi, Y., Fukuda, Y., Okubo, J., … Linert, W. (2002). Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 277(1), 21-30. doi:10.1016/s0301-0104(01)00706-6

Matsukizono, H., Kuroiwa, K., & Kimizuka, N. (2008). Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 37(4), 446-447. doi:10.1246/cl.2008.446

Santoro, A., Kershaw Cook, L. J., Kulmaczewski, R., Barrett, S. A., Cespedes, O., & Halcrow, M. A. (2015). Iron(II) Complexes of Tridentate Indazolylpyridine Ligands: Enhanced Spin-Crossover Hysteresis and Ligand-Based Fluorescence. Inorganic Chemistry, 54(2), 682-693. doi:10.1021/ic502726q

Wang, J.-L., Liu, Q., Meng, Y.-S., Liu, X., Zheng, H., Shi, Q., … Liu, T. (2018). Fluorescence modulation via photoinduced spin crossover switched energy transfer from fluorophores to FeII ions. Chemical Science, 9(11), 2892-2897. doi:10.1039/c7sc05221a

Garcia, Y., Robert, F., Naik, A. D., Zhou, G., Tinant, B., Robeyns, K., … Piraux, L. (2011). Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. Journal of the American Chemical Society, 133(40), 15850-15853. doi:10.1021/ja205974q

Schäfer, B., Bauer, T., Faus, I., Wolny, J. A., Dahms, F., Fuhr, O., … Ruben, M. (2017). A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 46(7), 2289-2302. doi:10.1039/c6dt04360g

Wang, C.-F., Li, R.-F., Chen, X.-Y., Wei, R.-J., Zheng, L.-S., & Tao, J. (2014). Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes. Angewandte Chemie International Edition, 54(5), 1574-1577. doi:10.1002/anie.201410454

Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., … Weber, B. (2018). Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. Journal of the American Chemical Society, 140(2), 700-709. doi:10.1021/jacs.7b10571

Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004

Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002

Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y

Galet, A., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G., & Real, J. A. (2005). Tunable Bistability in a Three-Dimensional Spin-Crossover Sensory- and Memory-Functional Material. Advanced Materials, 17(24), 2949-2953. doi:10.1002/adma.200501122

Sciortino, N. F., Scherl-Gruenwald, K. R., Chastanet, G., Halder, G. J., Chapman, K. W., Létard, J.-F., & Kepert, C. J. (2012). Hysteretic Three-Step Spin Crossover in a Thermo- and Photochromic 3D Pillared Hofmann-type Metal-Organic Framework. Angewandte Chemie International Edition, 51(40), 10154-10158. doi:10.1002/anie.201204387

Murphy, M. J., Zenere, K. A., Ragon, F., Southon, P. D., Kepert, C. J., & Neville, S. M. (2017). Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material. Journal of the American Chemical Society, 139(3), 1330-1335. doi:10.1021/jacs.6b12465

Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039

Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379

Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d

Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c

Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2014). Perturbation of Spin Crossover Behavior by Covalent Post-Synthetic Modification of a Porous Metal-Organic Framework. Angewandte Chemie International Edition, 53(38), 10164-10168. doi:10.1002/anie.201402951

Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853

Meded, V., Bagrets, A., Fink, K., Chandrasekar, R., Ruben, M., Evers, F., … van der Zant, H. S. J. (2011). Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. Physical Review B, 83(24). doi:10.1103/physrevb.83.245415

Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821

Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., … Wulfhekel, W. (2012). Robust spin crossover and memristance across a single molecule. Nature Communications, 3(1). doi:10.1038/ncomms1940

P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , p. 376 and references therein

Shepherd, H. J., Molnár, G., Nicolazzi, W., Salmon, L., & Bousseksou, A. (2012). Spin Crossover at the Nanometre Scale. European Journal of Inorganic Chemistry, 2013(5-6), 653-661. doi:10.1002/ejic.201201205

Rotaru, A., Dugay, J., Tan, R. P., Guralskiy, I. A., Salmon, L., Demont, P., … Bousseksou, A. (2013). Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Advanced Materials, 25(12), 1745-1749. doi:10.1002/adma.201203020

Gural’skiy, I. A., Quintero, C. M., Costa, J. S., Demont, P., Molnár, G., Salmon, L., … Bousseksou, A. (2014). Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C, 2(16), 2949-2955. doi:10.1039/c4tc00267a

Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., … Díez-Pérez, I. (2015). Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Nano Letters, 16(1), 218-226. doi:10.1021/acs.nanolett.5b03571

Piñeiro-López, L., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2014). Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun., 50(15), 1833-1835. doi:10.1039/c3cc48595a

Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M., & Real, J. A. (2017). Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal–Organic Frameworks. Inorganic Chemistry, 56(12), 7038-7047. doi:10.1021/acs.inorgchem.7b00639

Li, J.-Y., He, C.-T., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P., & Tong, M.-L. (2015). Tunable cooperativity in a spin-crossover Hoffman-like metal–organic framework material by aromatic guests. Journal of Materials Chemistry C, 3(30), 7830-7835. doi:10.1039/c5tc00432b

Haubenreisser, S., Wöste, T. H., Martínez, C., Ishihara, K., & Muñiz, K. (2015). Cover Picture: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions (Angew. Chem. Int. Ed. 1/2016). Angewandte Chemie International Edition, 55(1), 1-1. doi:10.1002/anie.201510990

Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2016). Hysteretic Four-Step Spin Crossover within a Three-Dimensional Porous Hofmann-like Material. Angewandte Chemie International Edition, 55(48), 15105-15109. doi:10.1002/anie.201605418

Zhang, D., Trzop, E., Valverde-Muñoz, F. J., Piñeiro-López, L., Muñoz, M. C., Collet, E., & Real, J. A. (2017). Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer. Crystal Growth & Design, 17(5), 2736-2745. doi:10.1021/acs.cgd.7b00218

Sciortino, N. F., Zenere, K. A., Corrigan, M. E., Halder, G. J., Chastanet, G., Létard, J.-F., … Neville, S. M. (2017). Four-step iron(ii) spin state cascade driven by antagonistic solid state interactions. Chemical Science, 8(1), 701-707. doi:10.1039/c6sc03114e

Ortega-Villar, N., Muñoz, M., & Real, J. (2016). Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry, 2(1), 16. doi:10.3390/magnetochemistry2010016

Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0

Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b

Wagner, B. D., McManus, G. J., Moulton, B., & Zaworotko, M. J. (2002). Exciplex fluorescence of {[Zn(bipy)1.5(NO3)2}]·CH3OH·0.5pyrene}n: a coordination polymer containing intercalated pyrene molecules (bipy = 4,4′-bipyridine). Chem. Commun., (18), 2176-2177. doi:10.1039/b205906a

Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., … Real, J. A. (1999). Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. Inorganica Chimica Acta, 291(1-2), 279-288. doi:10.1016/s0020-1693(99)00128-0

Gaspar, A. B., Carmen Mu�oz, M., Moliner, N., Ksenofontov, V., Levchenko, G., G�tlich, P., & Antonio Real, J. (2003). Polymorphism and Pressure Driven Thermal Spin Crossover Phenomenon in [Fe(abpt) 2 (NCX) 2 ] (X = S, and Se): Synthesis, Structure and Magnetic Properties. Monatshefte f�r Chemie / Chemical Monthly, 134(2), 285-294. doi:10.1007/s00706-002-0508-5

[-]

This item appears in the following Collection(s)

Show full item record