- -

Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Delgado, T. es_ES
dc.contributor.author Meneses-Sánchez, M. es_ES
dc.contributor.author Piñeiro-López, L. es_ES
dc.contributor.author Bartual-Murgui, C. es_ES
dc.contributor.author Muñoz Roca, María Del Carmen es_ES
dc.contributor.author Real, J.A. es_ES
dc.date.accessioned 2020-07-08T03:32:39Z
dc.date.available 2020-07-08T03:32:39Z
dc.date.issued 2018-11-28 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147639
dc.description.abstract [EN] The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical technologies. In this context, we present the first three-dimensional Fe-II Hofmann-type coordination polymer exhibiting SCO properties and luminescence. The complex {Fe-II(bpben)[Au(CN)(2)]}@pyr (bpben = 1,4-bis(4-pyridyl)benzene) functionalized with pyrene (pyr) guests undergoes a cooperative multi-step SCO, which has been investigated by single crystal X-ray diffraction, single crystal UV-Vis absorption spectroscopy, and magnetic and calorimetric measurements. The resulting fluorescence from pyrene and exciplex emissions are controlled by the thermal and light irradiation (LIESST effect) dependence of the high/low-spin state population of Fe-II. Conversely, the SCO can be tracked by monitoring the fluorescence emission. This ON-OFF interplay between SCO and luminescence combined with the amenability of Hofmann-type materials to be processed at the nano-scale may be relevant for the generation of SCO-based sensors, actuators and spintronic devices. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2013-46275-P and CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), Generalitat Valenciana (PROMETEO/2016/147) and the Swiss National Science Foundation (Project number 200021-169033). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject FE(ABPT)(2)(NCX)(2) X es_ES
dc.subject State es_ES
dc.subject Transition es_ES
dc.subject Complexes es_ES
dc.subject Behavior es_ES
dc.subject Nanocomposite es_ES
dc.subject Hysteresis es_ES
dc.subject Pressure es_ES
dc.subject Emission es_ES
dc.subject Networks es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8sc02677g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SNSF//200021_169033/CH/Fundamental studies of boron hydrogen compounds from BH4- to B12H122- and derived compounds and luminescence studies on energy transfer in rare earth containing phosphors/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-46275-P/ES/SENSORES Y MEMORIAS BASADOS EN MATERIALES BIESTABLES CON TRANSICION DE ESPIN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO2016%2F147/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Delgado, T.; Meneses-Sánchez, M.; Piñeiro-López, L.; Bartual-Murgui, C.; Muñoz Roca, MDC.; Real, J. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science. 9(44):8446-8452. https://doi.org/10.1039/c8sc02677g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8sc02677g es_ES
dc.description.upvformatpinicio 8446 es_ES
dc.description.upvformatpfin 8452 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 44 es_ES
dc.identifier.pmid 30542594 es_ES
dc.identifier.pmcid PMC6247521 es_ES
dc.relation.pasarela S\373561 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Swiss National Science Foundation es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Spin Crossover in Transition Metal Compounds I-III. Top. Curr. Chem. , P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235 es_ES
dc.description.references Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c es_ES
dc.description.references Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a es_ES
dc.description.references Spin-crossover materials: properties and applications , ed. M. A. Halcrow , John Wiley & Sons , 2013 es_ES
dc.description.references Cavallini, M., Bergenti, I., Milita, S., Kengne, J. C., Gentili, D., Ruani, G., … Ruben, M. (2011). Thin Deposits and Patterning of Room-Temperature-Switchable One-Dimensional Spin-Crossover Compounds. Langmuir, 27(7), 4076-4081. doi:10.1021/la104901m es_ES
dc.description.references P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , pp. 376–404 es_ES
dc.description.references Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., & Bousseksou, A. (2017). Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 30(5), 1703862. doi:10.1002/adma.201703862 es_ES
dc.description.references H. J. Shepherd , C. M.Quintero , G.Molnar , L.Salmon and A.Bousseksou , in Luminescent spin-crossover materials , John Wiley & Sons Ltd. , 2013 , p. 347 es_ES
dc.description.references Piguet, C., Rivara-Minten, E., Bernardinelli, G., Bünzli, J.-C. G., & Hopfgartner, G. (1997). Non-covalent lanthanide podates with predetermined physicochemical properties: iron(II) spin-state equilibria in self-assembled heterodinuclear d–f supramolecular complexes. Journal of the Chemical Society, Dalton Transactions, (3), 421-434. doi:10.1039/a605986d es_ES
dc.description.references Matsuda, M., Isozaki, H., & Tajima, H. (2008). Reproducible on–off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films, 517(4), 1465-1467. doi:10.1016/j.tsf.2008.09.034 es_ES
dc.description.references Salmon, L., Molnár, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631a es_ES
dc.description.references Titos-Padilla, S., Herrera, J. M., Chen, X.-W., Delgado, J. J., & Colacio, E. (2011). Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie International Edition, 50(14), 3290-3293. doi:10.1002/anie.201007847 es_ES
dc.description.references Quintero, C. M., Gural’skiy, I. A., Salmon, L., Molnár, G., Bergaud, C., & Bousseksou, A. (2012). Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 22(9), 3745. doi:10.1039/c2jm15662h es_ES
dc.description.references Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C, 3(19), 5026-5032. doi:10.1039/c5tc00667h es_ES
dc.description.references Suleimanov, I., Kraieva, O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Enhanced luminescence stability with a Tb–spin crossover nanocomposite for spin state monitoring. Chemical Communications, 51(82), 15098-15101. doi:10.1039/c5cc06426k es_ES
dc.description.references Hasegawa, M., Renz, F., Hara, T., Kikuchi, Y., Fukuda, Y., Okubo, J., … Linert, W. (2002). Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 277(1), 21-30. doi:10.1016/s0301-0104(01)00706-6 es_ES
dc.description.references Matsukizono, H., Kuroiwa, K., & Kimizuka, N. (2008). Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 37(4), 446-447. doi:10.1246/cl.2008.446 es_ES
dc.description.references Santoro, A., Kershaw Cook, L. J., Kulmaczewski, R., Barrett, S. A., Cespedes, O., & Halcrow, M. A. (2015). Iron(II) Complexes of Tridentate Indazolylpyridine Ligands: Enhanced Spin-Crossover Hysteresis and Ligand-Based Fluorescence. Inorganic Chemistry, 54(2), 682-693. doi:10.1021/ic502726q es_ES
dc.description.references Wang, J.-L., Liu, Q., Meng, Y.-S., Liu, X., Zheng, H., Shi, Q., … Liu, T. (2018). Fluorescence modulation via photoinduced spin crossover switched energy transfer from fluorophores to FeII ions. Chemical Science, 9(11), 2892-2897. doi:10.1039/c7sc05221a es_ES
dc.description.references Garcia, Y., Robert, F., Naik, A. D., Zhou, G., Tinant, B., Robeyns, K., … Piraux, L. (2011). Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. Journal of the American Chemical Society, 133(40), 15850-15853. doi:10.1021/ja205974q es_ES
dc.description.references Schäfer, B., Bauer, T., Faus, I., Wolny, J. A., Dahms, F., Fuhr, O., … Ruben, M. (2017). A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 46(7), 2289-2302. doi:10.1039/c6dt04360g es_ES
dc.description.references Wang, C.-F., Li, R.-F., Chen, X.-Y., Wei, R.-J., Zheng, L.-S., & Tao, J. (2014). Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes. Angewandte Chemie International Edition, 54(5), 1574-1577. doi:10.1002/anie.201410454 es_ES
dc.description.references Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., … Weber, B. (2018). Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. Journal of the American Chemical Society, 140(2), 700-709. doi:10.1021/jacs.7b10571 es_ES
dc.description.references Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 es_ES
dc.description.references Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002 es_ES
dc.description.references Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y es_ES
dc.description.references Galet, A., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G., & Real, J. A. (2005). Tunable Bistability in a Three-Dimensional Spin-Crossover Sensory- and Memory-Functional Material. Advanced Materials, 17(24), 2949-2953. doi:10.1002/adma.200501122 es_ES
dc.description.references Sciortino, N. F., Scherl-Gruenwald, K. R., Chastanet, G., Halder, G. J., Chapman, K. W., Létard, J.-F., & Kepert, C. J. (2012). Hysteretic Three-Step Spin Crossover in a Thermo- and Photochromic 3D Pillared Hofmann-type Metal-Organic Framework. Angewandte Chemie International Edition, 51(40), 10154-10158. doi:10.1002/anie.201204387 es_ES
dc.description.references Murphy, M. J., Zenere, K. A., Ragon, F., Southon, P. D., Kepert, C. J., & Neville, S. M. (2017). Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material. Journal of the American Chemical Society, 139(3), 1330-1335. doi:10.1021/jacs.6b12465 es_ES
dc.description.references Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039 es_ES
dc.description.references Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379 es_ES
dc.description.references Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d es_ES
dc.description.references Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c es_ES
dc.description.references Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2014). Perturbation of Spin Crossover Behavior by Covalent Post-Synthetic Modification of a Porous Metal-Organic Framework. Angewandte Chemie International Edition, 53(38), 10164-10168. doi:10.1002/anie.201402951 es_ES
dc.description.references Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853 es_ES
dc.description.references Meded, V., Bagrets, A., Fink, K., Chandrasekar, R., Ruben, M., Evers, F., … van der Zant, H. S. J. (2011). Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. Physical Review B, 83(24). doi:10.1103/physrevb.83.245415 es_ES
dc.description.references Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821 es_ES
dc.description.references Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., … Wulfhekel, W. (2012). Robust spin crossover and memristance across a single molecule. Nature Communications, 3(1). doi:10.1038/ncomms1940 es_ES
dc.description.references P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , p. 376 and references therein es_ES
dc.description.references Shepherd, H. J., Molnár, G., Nicolazzi, W., Salmon, L., & Bousseksou, A. (2012). Spin Crossover at the Nanometre Scale. European Journal of Inorganic Chemistry, 2013(5-6), 653-661. doi:10.1002/ejic.201201205 es_ES
dc.description.references Rotaru, A., Dugay, J., Tan, R. P., Guralskiy, I. A., Salmon, L., Demont, P., … Bousseksou, A. (2013). Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Advanced Materials, 25(12), 1745-1749. doi:10.1002/adma.201203020 es_ES
dc.description.references Gural’skiy, I. A., Quintero, C. M., Costa, J. S., Demont, P., Molnár, G., Salmon, L., … Bousseksou, A. (2014). Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C, 2(16), 2949-2955. doi:10.1039/c4tc00267a es_ES
dc.description.references Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., … Díez-Pérez, I. (2015). Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Nano Letters, 16(1), 218-226. doi:10.1021/acs.nanolett.5b03571 es_ES
dc.description.references Piñeiro-López, L., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2014). Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun., 50(15), 1833-1835. doi:10.1039/c3cc48595a es_ES
dc.description.references Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M., & Real, J. A. (2017). Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal–Organic Frameworks. Inorganic Chemistry, 56(12), 7038-7047. doi:10.1021/acs.inorgchem.7b00639 es_ES
dc.description.references Li, J.-Y., He, C.-T., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P., & Tong, M.-L. (2015). Tunable cooperativity in a spin-crossover Hoffman-like metal–organic framework material by aromatic guests. Journal of Materials Chemistry C, 3(30), 7830-7835. doi:10.1039/c5tc00432b es_ES
dc.description.references Haubenreisser, S., Wöste, T. H., Martínez, C., Ishihara, K., & Muñiz, K. (2015). Cover Picture: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions (Angew. Chem. Int. Ed. 1/2016). Angewandte Chemie International Edition, 55(1), 1-1. doi:10.1002/anie.201510990 es_ES
dc.description.references Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2016). Hysteretic Four-Step Spin Crossover within a Three-Dimensional Porous Hofmann-like Material. Angewandte Chemie International Edition, 55(48), 15105-15109. doi:10.1002/anie.201605418 es_ES
dc.description.references Zhang, D., Trzop, E., Valverde-Muñoz, F. J., Piñeiro-López, L., Muñoz, M. C., Collet, E., & Real, J. A. (2017). Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer. Crystal Growth & Design, 17(5), 2736-2745. doi:10.1021/acs.cgd.7b00218 es_ES
dc.description.references Sciortino, N. F., Zenere, K. A., Corrigan, M. E., Halder, G. J., Chastanet, G., Létard, J.-F., … Neville, S. M. (2017). Four-step iron(ii) spin state cascade driven by antagonistic solid state interactions. Chemical Science, 8(1), 701-707. doi:10.1039/c6sc03114e es_ES
dc.description.references Ortega-Villar, N., Muñoz, M., & Real, J. (2016). Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry, 2(1), 16. doi:10.3390/magnetochemistry2010016 es_ES
dc.description.references Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0 es_ES
dc.description.references Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b es_ES
dc.description.references Wagner, B. D., McManus, G. J., Moulton, B., & Zaworotko, M. J. (2002). Exciplex fluorescence of {[Zn(bipy)1.5(NO3)2}]·CH3OH·0.5pyrene}n: a coordination polymer containing intercalated pyrene molecules (bipy = 4,4′-bipyridine). Chem. Commun., (18), 2176-2177. doi:10.1039/b205906a es_ES
dc.description.references Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., … Real, J. A. (1999). Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. Inorganica Chimica Acta, 291(1-2), 279-288. doi:10.1016/s0020-1693(99)00128-0 es_ES
dc.description.references Gaspar, A. B., Carmen Mu�oz, M., Moliner, N., Ksenofontov, V., Levchenko, G., G�tlich, P., & Antonio Real, J. (2003). Polymorphism and Pressure Driven Thermal Spin Crossover Phenomenon in [Fe(abpt) 2 (NCX) 2 ] (X = S, and Se): Synthesis, Structure and Magnetic Properties. Monatshefte f�r Chemie / Chemical Monthly, 134(2), 285-294. doi:10.1007/s00706-002-0508-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem