Mostrar el registro sencillo del ítem
dc.contributor.author | Delgado, T. | es_ES |
dc.contributor.author | Meneses-Sánchez, M. | es_ES |
dc.contributor.author | Piñeiro-López, L. | es_ES |
dc.contributor.author | Bartual-Murgui, C. | es_ES |
dc.contributor.author | Muñoz Roca, María Del Carmen | es_ES |
dc.contributor.author | Real, J.A. | es_ES |
dc.date.accessioned | 2020-07-08T03:32:39Z | |
dc.date.available | 2020-07-08T03:32:39Z | |
dc.date.issued | 2018-11-28 | es_ES |
dc.identifier.issn | 2041-6520 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147639 | |
dc.description.abstract | [EN] The search for bifunctional materials showing synergies between spin crossover (SCO) and luminescence has attracted substantial interest since they could be promising platforms for new switching electronic and optical technologies. In this context, we present the first three-dimensional Fe-II Hofmann-type coordination polymer exhibiting SCO properties and luminescence. The complex {Fe-II(bpben)[Au(CN)(2)]}@pyr (bpben = 1,4-bis(4-pyridyl)benzene) functionalized with pyrene (pyr) guests undergoes a cooperative multi-step SCO, which has been investigated by single crystal X-ray diffraction, single crystal UV-Vis absorption spectroscopy, and magnetic and calorimetric measurements. The resulting fluorescence from pyrene and exciplex emissions are controlled by the thermal and light irradiation (LIESST effect) dependence of the high/low-spin state population of Fe-II. Conversely, the SCO can be tracked by monitoring the fluorescence emission. This ON-OFF interplay between SCO and luminescence combined with the amenability of Hofmann-type materials to be processed at the nano-scale may be relevant for the generation of SCO-based sensors, actuators and spintronic devices. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO), FEDER (CTQ2013-46275-P and CTQ2016-78341-P), Unidad de Excelencia Maria de Maeztu (MDM-2015-0538), Generalitat Valenciana (PROMETEO/2016/147) and the Swiss National Science Foundation (Project number 200021-169033). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Science | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | FE(ABPT)(2)(NCX)(2) X | es_ES |
dc.subject | State | es_ES |
dc.subject | Transition | es_ES |
dc.subject | Complexes | es_ES |
dc.subject | Behavior | es_ES |
dc.subject | Nanocomposite | es_ES |
dc.subject | Hysteresis | es_ES |
dc.subject | Pressure | es_ES |
dc.subject | Emission | es_ES |
dc.subject | Networks | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8sc02677g | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/SNSF//200021_169033/CH/Fundamental studies of boron hydrogen compounds from BH4- to B12H122- and derived compounds and luminescence studies on energy transfer in rare earth containing phosphors/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2013-46275-P/ES/SENSORES Y MEMORIAS BASADOS EN MATERIALES BIESTABLES CON TRANSICION DE ESPIN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO2016%2F147/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-78341-P/ES/MATERIALES SPIN CROSSOVER BIESTABLES: DE LAS PROPIEDADES MACROSCOPICAS A LA ESPINTRONICA MOLECULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MDM-2015-0538/ES/INSTITUTO DE CIENCIA MOLECULAR/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Delgado, T.; Meneses-Sánchez, M.; Piñeiro-López, L.; Bartual-Murgui, C.; Muñoz Roca, MDC.; Real, J. (2018). Thermo- and photo-modulation of exciplex fluorescence in a 3D spin crossover Hofmann-type coordination polymer. Chemical Science. 9(44):8446-8452. https://doi.org/10.1039/c8sc02677g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c8sc02677g | es_ES |
dc.description.upvformatpinicio | 8446 | es_ES |
dc.description.upvformatpfin | 8452 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 44 | es_ES |
dc.identifier.pmid | 30542594 | es_ES |
dc.identifier.pmcid | PMC6247521 | es_ES |
dc.relation.pasarela | S\373561 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Swiss National Science Foundation | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Spin Crossover in Transition Metal Compounds I-III. Top. Curr. Chem. , P. Gütlich and H. A. Goodwin , 2004 , vol. 233–235 | es_ES |
dc.description.references | Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c | es_ES |
dc.description.references | Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a | es_ES |
dc.description.references | Spin-crossover materials: properties and applications , ed. M. A. Halcrow , John Wiley & Sons , 2013 | es_ES |
dc.description.references | Cavallini, M., Bergenti, I., Milita, S., Kengne, J. C., Gentili, D., Ruani, G., … Ruben, M. (2011). Thin Deposits and Patterning of Room-Temperature-Switchable One-Dimensional Spin-Crossover Compounds. Langmuir, 27(7), 4076-4081. doi:10.1021/la104901m | es_ES |
dc.description.references | P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , pp. 376–404 | es_ES |
dc.description.references | Molnár, G., Rat, S., Salmon, L., Nicolazzi, W., & Bousseksou, A. (2017). Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Advanced Materials, 30(5), 1703862. doi:10.1002/adma.201703862 | es_ES |
dc.description.references | H. J. Shepherd , C. M.Quintero , G.Molnar , L.Salmon and A.Bousseksou , in Luminescent spin-crossover materials , John Wiley & Sons Ltd. , 2013 , p. 347 | es_ES |
dc.description.references | Piguet, C., Rivara-Minten, E., Bernardinelli, G., Bünzli, J.-C. G., & Hopfgartner, G. (1997). Non-covalent lanthanide podates with predetermined physicochemical properties: iron(II) spin-state equilibria in self-assembled heterodinuclear d–f supramolecular complexes. Journal of the Chemical Society, Dalton Transactions, (3), 421-434. doi:10.1039/a605986d | es_ES |
dc.description.references | Matsuda, M., Isozaki, H., & Tajima, H. (2008). Reproducible on–off switching of the light emission from the electroluminescent device containing a spin crossover complex. Thin Solid Films, 517(4), 1465-1467. doi:10.1016/j.tsf.2008.09.034 | es_ES |
dc.description.references | Salmon, L., Molnár, G., Zitouni, D., Quintero, C., Bergaud, C., Micheau, J.-C., & Bousseksou, A. (2010). A novel approach for fluorescent thermometry and thermal imaging purposes using spin crossover nanoparticles. Journal of Materials Chemistry, 20(26), 5499. doi:10.1039/c0jm00631a | es_ES |
dc.description.references | Titos-Padilla, S., Herrera, J. M., Chen, X.-W., Delgado, J. J., & Colacio, E. (2011). Bifunctional Hybrid SiO2 Nanoparticles Showing Synergy between Core Spin Crossover and Shell Luminescence Properties. Angewandte Chemie International Edition, 50(14), 3290-3293. doi:10.1002/anie.201007847 | es_ES |
dc.description.references | Quintero, C. M., Gural’skiy, I. A., Salmon, L., Molnár, G., Bergaud, C., & Bousseksou, A. (2012). Soft lithographic patterning of spin crossover complexes. Part 1: fluorescent detection of the spin transition in single nano-objects. Journal of Materials Chemistry, 22(9), 3745. doi:10.1039/c2jm15662h | es_ES |
dc.description.references | Suleimanov, I., Kraieva, O., Sánchez Costa, J., Fritsky, I. O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Electronic communication between fluorescent pyrene excimers and spin crossover complexes in nanocomposite particles. Journal of Materials Chemistry C, 3(19), 5026-5032. doi:10.1039/c5tc00667h | es_ES |
dc.description.references | Suleimanov, I., Kraieva, O., Molnár, G., Salmon, L., & Bousseksou, A. (2015). Enhanced luminescence stability with a Tb–spin crossover nanocomposite for spin state monitoring. Chemical Communications, 51(82), 15098-15101. doi:10.1039/c5cc06426k | es_ES |
dc.description.references | Hasegawa, M., Renz, F., Hara, T., Kikuchi, Y., Fukuda, Y., Okubo, J., … Linert, W. (2002). Fluorescence spectra of Fe(II) spin crossover complexes with 2,6-bis(benzimidazole-2′-yl)pyridine. Chemical Physics, 277(1), 21-30. doi:10.1016/s0301-0104(01)00706-6 | es_ES |
dc.description.references | Matsukizono, H., Kuroiwa, K., & Kimizuka, N. (2008). Self-assembly-directed Spin Conversion of Iron(II) 1,2,4-Triazole Complexes in Solution and Their Effect on Photorelaxation Processes of Fluorescent Counter Ions. Chemistry Letters, 37(4), 446-447. doi:10.1246/cl.2008.446 | es_ES |
dc.description.references | Santoro, A., Kershaw Cook, L. J., Kulmaczewski, R., Barrett, S. A., Cespedes, O., & Halcrow, M. A. (2015). Iron(II) Complexes of Tridentate Indazolylpyridine Ligands: Enhanced Spin-Crossover Hysteresis and Ligand-Based Fluorescence. Inorganic Chemistry, 54(2), 682-693. doi:10.1021/ic502726q | es_ES |
dc.description.references | Wang, J.-L., Liu, Q., Meng, Y.-S., Liu, X., Zheng, H., Shi, Q., … Liu, T. (2018). Fluorescence modulation via photoinduced spin crossover switched energy transfer from fluorophores to FeII ions. Chemical Science, 9(11), 2892-2897. doi:10.1039/c7sc05221a | es_ES |
dc.description.references | Garcia, Y., Robert, F., Naik, A. D., Zhou, G., Tinant, B., Robeyns, K., … Piraux, L. (2011). Spin Transition Charted in a Fluorophore-Tagged Thermochromic Dinuclear Iron(II) Complex. Journal of the American Chemical Society, 133(40), 15850-15853. doi:10.1021/ja205974q | es_ES |
dc.description.references | Schäfer, B., Bauer, T., Faus, I., Wolny, J. A., Dahms, F., Fuhr, O., … Ruben, M. (2017). A luminescent Pt2Fe spin crossover complex. Dalton Transactions, 46(7), 2289-2302. doi:10.1039/c6dt04360g | es_ES |
dc.description.references | Wang, C.-F., Li, R.-F., Chen, X.-Y., Wei, R.-J., Zheng, L.-S., & Tao, J. (2014). Synergetic Spin Crossover and Fluorescence in One-Dimensional Hybrid Complexes. Angewandte Chemie International Edition, 54(5), 1574-1577. doi:10.1002/anie.201410454 | es_ES |
dc.description.references | Lochenie, C., Schötz, K., Panzer, F., Kurz, H., Maier, B., Puchtler, F., … Weber, B. (2018). Spin-Crossover Iron(II) Coordination Polymer with Fluorescent Properties: Correlation between Emission Properties and Spin State. Journal of the American Chemical Society, 140(2), 700-709. doi:10.1021/jacs.7b10571 | es_ES |
dc.description.references | Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 | es_ES |
dc.description.references | Ni, Z.-P., Liu, J.-L., Hoque, M. N., Liu, W., Li, J.-Y., Chen, Y.-C., & Tong, M.-L. (2017). Recent advances in guest effects on spin-crossover behavior in Hofmann-type metal-organic frameworks. Coordination Chemistry Reviews, 335, 28-43. doi:10.1016/j.ccr.2016.12.002 | es_ES |
dc.description.references | Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y | es_ES |
dc.description.references | Galet, A., Gaspar, A. B., Muñoz, M. C., Bukin, G. V., Levchenko, G., & Real, J. A. (2005). Tunable Bistability in a Three-Dimensional Spin-Crossover Sensory- and Memory-Functional Material. Advanced Materials, 17(24), 2949-2953. doi:10.1002/adma.200501122 | es_ES |
dc.description.references | Sciortino, N. F., Scherl-Gruenwald, K. R., Chastanet, G., Halder, G. J., Chapman, K. W., Létard, J.-F., & Kepert, C. J. (2012). Hysteretic Three-Step Spin Crossover in a Thermo- and Photochromic 3D Pillared Hofmann-type Metal-Organic Framework. Angewandte Chemie International Edition, 51(40), 10154-10158. doi:10.1002/anie.201204387 | es_ES |
dc.description.references | Murphy, M. J., Zenere, K. A., Ragon, F., Southon, P. D., Kepert, C. J., & Neville, S. M. (2017). Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material. Journal of the American Chemical Society, 139(3), 1330-1335. doi:10.1021/jacs.6b12465 | es_ES |
dc.description.references | Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039 | es_ES |
dc.description.references | Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379 | es_ES |
dc.description.references | Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d | es_ES |
dc.description.references | Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c | es_ES |
dc.description.references | Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2014). Perturbation of Spin Crossover Behavior by Covalent Post-Synthetic Modification of a Porous Metal-Organic Framework. Angewandte Chemie International Edition, 53(38), 10164-10168. doi:10.1002/anie.201402951 | es_ES |
dc.description.references | Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853 | es_ES |
dc.description.references | Meded, V., Bagrets, A., Fink, K., Chandrasekar, R., Ruben, M., Evers, F., … van der Zant, H. S. J. (2011). Electrical control over the Fe(II) spin crossover in a single molecule: Theory and experiment. Physical Review B, 83(24). doi:10.1103/physrevb.83.245415 | es_ES |
dc.description.references | Prins, F., Monrabal-Capilla, M., Osorio, E. A., Coronado, E., & van der Zant, H. S. J. (2011). Room-Temperature Electrical Addressing of a Bistable Spin-Crossover Molecular System. Advanced Materials, 23(13), 1545-1549. doi:10.1002/adma.201003821 | es_ES |
dc.description.references | Miyamachi, T., Gruber, M., Davesne, V., Bowen, M., Boukari, S., Joly, L., … Wulfhekel, W. (2012). Robust spin crossover and memristance across a single molecule. Nature Communications, 3(1). doi:10.1038/ncomms1940 | es_ES |
dc.description.references | P. N. Martinho , C.Rajnak and M.Ruben , in Spin-Crossover Materials: Properties and Applications , ed. M. A. Halcrow , Wiley , 2013 , p. 376 and references therein | es_ES |
dc.description.references | Shepherd, H. J., Molnár, G., Nicolazzi, W., Salmon, L., & Bousseksou, A. (2012). Spin Crossover at the Nanometre Scale. European Journal of Inorganic Chemistry, 2013(5-6), 653-661. doi:10.1002/ejic.201201205 | es_ES |
dc.description.references | Rotaru, A., Dugay, J., Tan, R. P., Guralskiy, I. A., Salmon, L., Demont, P., … Bousseksou, A. (2013). Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices. Advanced Materials, 25(12), 1745-1749. doi:10.1002/adma.201203020 | es_ES |
dc.description.references | Gural’skiy, I. A., Quintero, C. M., Costa, J. S., Demont, P., Molnár, G., Salmon, L., … Bousseksou, A. (2014). Spin crossover composite materials for electrothermomechanical actuators. J. Mater. Chem. C, 2(16), 2949-2955. doi:10.1039/c4tc00267a | es_ES |
dc.description.references | Aragonès, A. C., Aravena, D., Cerdá, J. I., Acís-Castillo, Z., Li, H., Real, J. A., … Díez-Pérez, I. (2015). Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport. Nano Letters, 16(1), 218-226. doi:10.1021/acs.nanolett.5b03571 | es_ES |
dc.description.references | Piñeiro-López, L., Seredyuk, M., Muñoz, M. C., & Real, J. A. (2014). Two- and one-step cooperative spin transitions in Hofmann-like clathrates with enhanced loading capacity. Chem. Commun., 50(15), 1833-1835. doi:10.1039/c3cc48595a | es_ES |
dc.description.references | Piñeiro-López, L., Valverde-Muñoz, F. J., Seredyuk, M., Muñoz, M. C., Haukka, M., & Real, J. A. (2017). Guest Induced Strong Cooperative One- and Two-Step Spin Transitions in Highly Porous Iron(II) Hofmann-Type Metal–Organic Frameworks. Inorganic Chemistry, 56(12), 7038-7047. doi:10.1021/acs.inorgchem.7b00639 | es_ES |
dc.description.references | Li, J.-Y., He, C.-T., Chen, Y.-C., Zhang, Z.-M., Liu, W., Ni, Z.-P., & Tong, M.-L. (2015). Tunable cooperativity in a spin-crossover Hoffman-like metal–organic framework material by aromatic guests. Journal of Materials Chemistry C, 3(30), 7830-7835. doi:10.1039/c5tc00432b | es_ES |
dc.description.references | Haubenreisser, S., Wöste, T. H., Martínez, C., Ishihara, K., & Muñiz, K. (2015). Cover Picture: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions (Angew. Chem. Int. Ed. 1/2016). Angewandte Chemie International Edition, 55(1), 1-1. doi:10.1002/anie.201510990 | es_ES |
dc.description.references | Clements, J. E., Price, J. R., Neville, S. M., & Kepert, C. J. (2016). Hysteretic Four-Step Spin Crossover within a Three-Dimensional Porous Hofmann-like Material. Angewandte Chemie International Edition, 55(48), 15105-15109. doi:10.1002/anie.201605418 | es_ES |
dc.description.references | Zhang, D., Trzop, E., Valverde-Muñoz, F. J., Piñeiro-López, L., Muñoz, M. C., Collet, E., & Real, J. A. (2017). Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer. Crystal Growth & Design, 17(5), 2736-2745. doi:10.1021/acs.cgd.7b00218 | es_ES |
dc.description.references | Sciortino, N. F., Zenere, K. A., Corrigan, M. E., Halder, G. J., Chastanet, G., Létard, J.-F., … Neville, S. M. (2017). Four-step iron(ii) spin state cascade driven by antagonistic solid state interactions. Chemical Science, 8(1), 701-707. doi:10.1039/c6sc03114e | es_ES |
dc.description.references | Ortega-Villar, N., Muñoz, M., & Real, J. (2016). Symmetry Breaking in Iron(II) Spin-Crossover Molecular Crystals. Magnetochemistry, 2(1), 16. doi:10.3390/magnetochemistry2010016 | es_ES |
dc.description.references | Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H., & Hauser, A. (1984). Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chemical Physics Letters, 105(1), 1-4. doi:10.1016/0009-2614(84)80403-0 | es_ES |
dc.description.references | Létard, J.-F., Guionneau, P., Rabardel, L., Howard, J. A. K., Goeta, A. E., Chasseau, D., & Kahn, O. (1998). Structural, Magnetic, and Photomagnetic Studies of a Mononuclear Iron(II) Derivative Exhibiting an Exceptionally Abrupt Spin Transition. Light-Induced Thermal Hysteresis Phenomenon. Inorganic Chemistry, 37(17), 4432-4441. doi:10.1021/ic980107b | es_ES |
dc.description.references | Wagner, B. D., McManus, G. J., Moulton, B., & Zaworotko, M. J. (2002). Exciplex fluorescence of {[Zn(bipy)1.5(NO3)2}]·CH3OH·0.5pyrene}n: a coordination polymer containing intercalated pyrene molecules (bipy = 4,4′-bipyridine). Chem. Commun., (18), 2176-2177. doi:10.1039/b205906a | es_ES |
dc.description.references | Moliner, N., Muñoz, M. C., Létard, S., Létard, J.-F., Solans, X., Burriel, R., … Real, J. A. (1999). Spin-crossover in the [Fe(abpt)2(NCX)2] (X=S, Se) system: structural, magnetic, calorimetric and photomagnetic studies. Inorganica Chimica Acta, 291(1-2), 279-288. doi:10.1016/s0020-1693(99)00128-0 | es_ES |
dc.description.references | Gaspar, A. B., Carmen Mu�oz, M., Moliner, N., Ksenofontov, V., Levchenko, G., G�tlich, P., & Antonio Real, J. (2003). Polymorphism and Pressure Driven Thermal Spin Crossover Phenomenon in [Fe(abpt) 2 (NCX) 2 ] (X = S, and Se): Synthesis, Structure and Magnetic Properties. Monatshefte f�r Chemie / Chemical Monthly, 134(2), 285-294. doi:10.1007/s00706-002-0508-5 | es_ES |