Mostrar el registro sencillo del ítem
dc.contributor.author | Temoltzi-Ávila, R. | es_ES |
dc.contributor.author | Ávila-Pozos, R | es_ES |
dc.date.accessioned | 2020-07-08T10:48:38Z | |
dc.date.available | 2020-07-08T10:48:38Z | |
dc.date.issued | 2020-07-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/147660 | |
dc.description.abstract | [ES] Como aplicación de la solución del problema sobre la variación máxima de las amplitudes de oscilación de las soluciones de un sistema de ecuaciones diferenciales con una perturbación externa, el cual describe la dinámica de un sistema mecánico controlable con impactos, se determina una aproximación de la frontera del conjunto de alcanzabilidad del sistema dinámico. El método consiste en determinar en un conjunto, la perturbación externa que provoque amplitudes de oscilación máximas sobre las soluciones del sistema, y con ayuda de esta perturbación, determinar la existencia de trayectorias cerradas, las cuales describen la frontera del conjunto de alcanzabilidad. Los resultados se ilustran de forma numérica en casos particulares. | es_ES |
dc.description.abstract | [EN] In this work, the boundary of the attainabbility set of a second order differential equation with an external perturbation is determined numerically, using the solution of the problem of the maximum variation of the oscillation amplitudes of its solutions. The method consists in determining, in a given set of functions, the external perturbation that causes maximum oscillation amplitudes in the solutions of the dierential equation that describes, as a particular case, the dynamics of a controllable mechanical system with impacts. With the help of this perturbation, the existence of a closed path that describes the boundary of the reachability set is determined, which allow to establish suffcient conditions on the robust stability of the solutions of the differential equation. The results are illustrated numerically in particular cases. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ecuaciones diferenciales | es_ES |
dc.subject | Sistemas de control no lineal | es_ES |
dc.subject | Perturbaciones | es_ES |
dc.subject | Estabilidad robusta | es_ES |
dc.subject | Differential equations | es_ES |
dc.subject | Nonlinear systems of control | es_ES |
dc.subject | Perturbations | es_ES |
dc.subject | Robust stability | es_ES |
dc.title | Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta | es_ES |
dc.title.alternative | Attainability set of a mechanical controlable system and conditions of robust stability | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2020.11938 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Temoltzi-Ávila, R.; Ávila-Pozos, R. (2020). Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.11938 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2020.11938 | es_ES |
dc.description.upvformatpfin | 293 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\11938 | es_ES |
dc.description.references | Aleksandrov, V. V., Aleksandrova, O. V., Konovalenko, I., Tikhonova, K. V., 2016. Perturbed stable systems on a plane. Part 1. Moscow University Mechanics Bulletin 71 (5), 108-113. https://doi.org/10.3103/S0027133016050022 | es_ES |
dc.description.references | Aleksandrov, V. V., Alexandrova, O. V., Prikhod'ko, I. P., Telmotzi-Auila, R., 2007. Synthesis of self-oscillations. Moscow University Mechanics Bulletin 62 (3), 65-68. https://doi.org/10.3103/S0027133007030016 | es_ES |
dc.description.references | Aleksandrov, V. V., Reyes-Romero, M., Sidorenko, G. Y., Temoltzi-Auila, R., 2010. Stability of controlled inverted pendulum under permanent horizontal perturbations of the supporting point. Mechanics of Solids 45 (2), 187-193. https://doi.org/10.3103/S0025654410020044 | es_ES |
dc.description.references | Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. SIAM, Philadelphia. https://doi.org/10.1137/1.9781611970777 | es_ES |
dc.description.references | Bugrov, D. I., Formals'kii, A. M., 2017. Time dependence of the attainability regions of third order systems. Journal of Applied Mathematics and Mecha- nics 81, 106-113. https://doi.org/10.1016/j.jappmathmech.2017.08.004 | es_ES |
dc.description.references | Bugrov, D.I., 2016. Estimation of the attainability set for a linear system based on a linear matrix inequality. Moscow University Mathematics Bulletin 71, 253-256. https://doi.org/10.3103/S0027132216060061. | es_ES |
dc.description.references | Dyskin, A. V., Pasternak, E., Pelinovsky, E., 2012. On the dynamics of oscilators with bi-linear damping and stiffness. Journal of Sound and Vibration 331, 2856-2873. https://doi.org/10..1016/j.jsv.2012.01.031 | es_ES |
dc.description.references | Elishakoff, I., Ohsaki, M., 2010. Optimization and anti-optimization of structures under uncertainty. Imperial College Press, London. https://doi.org/10.1142/p678 | es_ES |
dc.description.references | Elsgoltz, L., 1969. Ecuaciones diferenciales y cálculo variacional. Mir, Moscú. | es_ES |
dc.description.references | Formal'skii, A. M., 2010. On the synthesis of optimal control for second order systems. Doklady Mathematics 81, 164-167. https://doi.org/10.1134/S1064562410010448 | es_ES |
dc.description.references | Fridman, E., Shaked, U., 2010. On reachable sets for linear systems with delay and bounded peak inputs. Automatica 39, 2005-2010. https://doi.org/10.1016/S0005- 1098(03)00204-8. | es_ES |
dc.description.references | Gomez, L.M., Botero, H., Alvarez, H., di Sciascio, F., 2015. Análisis de la controlabilidad de estado de sistemas irreversibles mediante teoría de conjuntos. Revista Iberoamericana de Automática e Informática industrial 12, 145-153. https://doi.org/10.1016/j.riai.2015.02.002. | es_ES |
dc.description.references | Gusev, M.I., 2012. External estimates of the reachability sets of nonlinear controlled systems. Automation and Remote Control 73, 450-461. https://doi.org/10.1134/S0005117912030046. | es_ES |
dc.description.references | Gusev, M.I., 2014. Internal approximations of reachable sets of control systems with state constraints. Proceedings of the Steklov Institute of Mathematics 287, 77-92. https://doi.org/10.1134/S0081543814090089. | es_ES |
dc.description.references | Holzinger, M.J., Scheeres, D.J., 2011. Reachability set subspace computation for nonlinear systems using sampling methods. 2011 50th IEEE Conference on Decision and Control and European Control Conference , 7317- 7324. https://doi.org/10.1109/CDC.2011.6160728. | es_ES |
dc.description.references | Ibrahim, R. A., 2009. Vibro-impact dynamics. Modelling, mapping and applications. Springer-Verlag, Berling. https://doi.org/10.1007/978-3-642-00275-5_8 | es_ES |
dc.description.references | Kumkov, S.S., Zharinov, A.N., 2004. Constructing attainability sets for nonlinear controlled systems in the plane. IFAC Proceedings Volumes 37, 158- 168. https://doi.org/10.1016/j.jmaa.2007.01.109. iFAC Workshop GSCP-04: Generalized solutions in control problems, Pereslavl-Zalessky, Russia, September 21-29, 2004. | es_ES |
dc.description.references | Kurzhanski, A., Valyi, I., 1999. Ellipsoidal calculus for estimation and control. Systems & Control: Foundations & Applications. Birkhäuser, Boston. | es_ES |
dc.description.references | Ma, Y., Agarwal, M., Banerjee, S., 2006. Border collision bifurcations in a soft impact system. Physics Letters A 354, 281-287. https://doi.org/10.1016/j.physleta.2006.01.025 | es_ES |
dc.description.references | Natsiavas, S., 1990. On the dynamics of oscillators with bi-linear damping and stiffness. International Journal of Non-Linear Mechanics 25(5), 535-554. https://doi.org/10.1016/0020-7462(90)90017-4 | es_ES |
dc.description.references | Parshikov, G.V., Matviychuk, A.R., 2017. On resource-efficient algorithm for non-linear systems approximate reachability set construction. AIP Conference Proceedings 1895, 120007. https://doi.org/10.1063/1.5007424. | es_ES |
dc.description.references | Pitarch, J.L., Sala, A., Arino, C.V., 2015. Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimación de conjuntos inescapables. Revista Iberoamericana de Automática e Informática industrial 12, 457-466. https://doi.org/10.1016/j.riai.2015.09.007. | es_ES |
dc.description.references | Shen, C., Zhong, S., 2011. The ellipsoidal bound of reachable sets for linear neutral systems with disturbances. Journal of the Franklin Institute 348, 2570-2585. https://doi.org/10.1016/j.jfranklin.2011.07.017. | es_ES |
dc.description.references | Vinnikov, E.V., 2015. Construction of attainable sets and integral funnels of nonlinear controlled systems in the Matlab environment. Computational Mathematics and Modeling 26, 107-119. doi:10.1007/s10598-014-9259-5 | es_ES |
dc.description.references | Weger, J. D., der Water, V. V., 2000. Grazing impact oscillations. Physical Review E 62, 2030-2041. https://doi.org/10.1103/PhysRevE.62.2030 | es_ES |
dc.description.references | Yakubovich, V. A., Leonov, G. A., Gelig, A. K., 2004. Stability of stationary sets in control systems with discontinuous nonlinearities. Series on Stability, Vibration and Control of Systems. World Scientific, New Jersey. https://doi.org/10.1142/5442 | es_ES |
dc.description.references | Zhermolenko, V. N., 1980. Sobre el problema de Bulgakov referente a la desviación máxima de un sistema oscilatorio de segundo orden. Vestn. Mosk. Univ. Ser. 1: Mat. Mekh. 2, 87-91, [En ruso]. | es_ES |
dc.description.references | Zhermolenko, V. N., 2007. Maximum deviation of oscillating system of the second order with external and parametric disturbances. Journal of Computer and Systems Sciences International 46, 407-411. https://doi.org/10.1134/S1064230707030094 | es_ES |