- -

Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Temoltzi-Ávila, R. es_ES
dc.contributor.author Ávila-Pozos, R es_ES
dc.date.accessioned 2020-07-08T10:48:38Z
dc.date.available 2020-07-08T10:48:38Z
dc.date.issued 2020-07-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/147660
dc.description.abstract [ES] Como aplicación de la solución del problema sobre la variación máxima de las amplitudes de oscilación de las soluciones de un sistema de ecuaciones diferenciales con una perturbación externa, el cual describe la dinámica de un sistema mecánico controlable con impactos, se determina una aproximación de la frontera del conjunto de alcanzabilidad del sistema dinámico. El método consiste en determinar en un conjunto, la perturbación externa que provoque amplitudes de oscilación máximas sobre las soluciones del sistema, y con ayuda de esta perturbación, determinar la existencia de trayectorias cerradas, las cuales describen la frontera del conjunto de alcanzabilidad. Los resultados se ilustran de forma numérica en casos particulares. es_ES
dc.description.abstract [EN] In this work, the boundary of the attainabbility set of a second order differential equation with an external perturbation is determined numerically, using the solution of the problem of the maximum variation of the oscillation amplitudes of its solutions. The method consists in determining, in a given set of functions, the external perturbation that causes maximum oscillation amplitudes in the solutions of the dierential equation that describes, as a particular case, the dynamics of a controllable mechanical system with impacts. With the help of this perturbation, the existence of a closed path that describes the boundary of the reachability set is determined, which allow to establish suffcient conditions on the robust stability of the solutions of the differential equation. The results are illustrated numerically in particular cases. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ecuaciones diferenciales es_ES
dc.subject Sistemas de control no lineal es_ES
dc.subject Perturbaciones es_ES
dc.subject Estabilidad robusta es_ES
dc.subject Differential equations es_ES
dc.subject Nonlinear systems of control es_ES
dc.subject Perturbations es_ES
dc.subject Robust stability es_ES
dc.title Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta es_ES
dc.title.alternative Attainability set of a mechanical controlable system and conditions of robust stability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.11938
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Temoltzi-Ávila, R.; Ávila-Pozos, R. (2020). Conjunto de alcanzabilidad de un sistema mecánico controlable y condiciones de estabilidad robusta. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.11938 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.11938 es_ES
dc.description.upvformatpfin 293 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\11938 es_ES
dc.description.references Aleksandrov, V. V., Aleksandrova, O. V., Konovalenko, I., Tikhonova, K. V., 2016. Perturbed stable systems on a plane. Part 1. Moscow University Mechanics Bulletin 71 (5), 108-113. https://doi.org/10.3103/S0027133016050022 es_ES
dc.description.references Aleksandrov, V. V., Alexandrova, O. V., Prikhod'ko, I. P., Telmotzi-Auila, R., 2007. Synthesis of self-oscillations. Moscow University Mechanics Bulletin 62 (3), 65-68. https://doi.org/10.3103/S0027133007030016 es_ES
dc.description.references Aleksandrov, V. V., Reyes-Romero, M., Sidorenko, G. Y., Temoltzi-Auila, R., 2010. Stability of controlled inverted pendulum under permanent horizontal perturbations of the supporting point. Mechanics of Solids 45 (2), 187-193. https://doi.org/10.3103/S0025654410020044 es_ES
dc.description.references Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in system and control theory. SIAM, Philadelphia. https://doi.org/10.1137/1.9781611970777 es_ES
dc.description.references Bugrov, D. I., Formals'kii, A. M., 2017. Time dependence of the attainability regions of third order systems. Journal of Applied Mathematics and Mecha- nics 81, 106-113. https://doi.org/10.1016/j.jappmathmech.2017.08.004 es_ES
dc.description.references Bugrov, D.I., 2016. Estimation of the attainability set for a linear system based on a linear matrix inequality. Moscow University Mathematics Bulletin 71, 253-256. https://doi.org/10.3103/S0027132216060061. es_ES
dc.description.references Dyskin, A. V., Pasternak, E., Pelinovsky, E., 2012. On the dynamics of oscilators with bi-linear damping and stiffness. Journal of Sound and Vibration 331, 2856-2873. https://doi.org/10..1016/j.jsv.2012.01.031 es_ES
dc.description.references Elishakoff, I., Ohsaki, M., 2010. Optimization and anti-optimization of structures under uncertainty. Imperial College Press, London. https://doi.org/10.1142/p678 es_ES
dc.description.references Elsgoltz, L., 1969. Ecuaciones diferenciales y cálculo variacional. Mir, Moscú. es_ES
dc.description.references Formal'skii, A. M., 2010. On the synthesis of optimal control for second order systems. Doklady Mathematics 81, 164-167. https://doi.org/10.1134/S1064562410010448 es_ES
dc.description.references Fridman, E., Shaked, U., 2010. On reachable sets for linear systems with delay and bounded peak inputs. Automatica 39, 2005-2010. https://doi.org/10.1016/S0005- 1098(03)00204-8. es_ES
dc.description.references Gomez, L.M., Botero, H., Alvarez, H., di Sciascio, F., 2015. Análisis de la controlabilidad de estado de sistemas irreversibles mediante teoría de conjuntos. Revista Iberoamericana de Automática e Informática industrial 12, 145-153. https://doi.org/10.1016/j.riai.2015.02.002. es_ES
dc.description.references Gusev, M.I., 2012. External estimates of the reachability sets of nonlinear controlled systems. Automation and Remote Control 73, 450-461. https://doi.org/10.1134/S0005117912030046. es_ES
dc.description.references Gusev, M.I., 2014. Internal approximations of reachable sets of control systems with state constraints. Proceedings of the Steklov Institute of Mathematics 287, 77-92. https://doi.org/10.1134/S0081543814090089. es_ES
dc.description.references Holzinger, M.J., Scheeres, D.J., 2011. Reachability set subspace computation for nonlinear systems using sampling methods. 2011 50th IEEE Conference on Decision and Control and European Control Conference , 7317- 7324. https://doi.org/10.1109/CDC.2011.6160728. es_ES
dc.description.references Ibrahim, R. A., 2009. Vibro-impact dynamics. Modelling, mapping and applications. Springer-Verlag, Berling. https://doi.org/10.1007/978-3-642-00275-5_8 es_ES
dc.description.references Kumkov, S.S., Zharinov, A.N., 2004. Constructing attainability sets for nonlinear controlled systems in the plane. IFAC Proceedings Volumes 37, 158- 168. https://doi.org/10.1016/j.jmaa.2007.01.109. iFAC Workshop GSCP-04: Generalized solutions in control problems, Pereslavl-Zalessky, Russia, September 21-29, 2004. es_ES
dc.description.references Kurzhanski, A., Valyi, I., 1999. Ellipsoidal calculus for estimation and control. Systems & Control: Foundations & Applications. Birkhäuser, Boston. es_ES
dc.description.references Ma, Y., Agarwal, M., Banerjee, S., 2006. Border collision bifurcations in a soft impact system. Physics Letters A 354, 281-287. https://doi.org/10.1016/j.physleta.2006.01.025 es_ES
dc.description.references Natsiavas, S., 1990. On the dynamics of oscillators with bi-linear damping and stiffness. International Journal of Non-Linear Mechanics 25(5), 535-554. https://doi.org/10.1016/0020-7462(90)90017-4 es_ES
dc.description.references Parshikov, G.V., Matviychuk, A.R., 2017. On resource-efficient algorithm for non-linear systems approximate reachability set construction. AIP Conference Proceedings 1895, 120007. https://doi.org/10.1063/1.5007424. es_ES
dc.description.references Pitarch, J.L., Sala, A., Arino, C.V., 2015. Estabilidad de sistemas Takagi-Sugeno bajo perturbaciones persistentes: estimación de conjuntos inescapables. Revista Iberoamericana de Automática e Informática industrial 12, 457-466. https://doi.org/10.1016/j.riai.2015.09.007. es_ES
dc.description.references Shen, C., Zhong, S., 2011. The ellipsoidal bound of reachable sets for linear neutral systems with disturbances. Journal of the Franklin Institute 348, 2570-2585. https://doi.org/10.1016/j.jfranklin.2011.07.017. es_ES
dc.description.references Vinnikov, E.V., 2015. Construction of attainable sets and integral funnels of nonlinear controlled systems in the Matlab environment. Computational Mathematics and Modeling 26, 107-119. doi:10.1007/s10598-014-9259-5 es_ES
dc.description.references Weger, J. D., der Water, V. V., 2000. Grazing impact oscillations. Physical Review E 62, 2030-2041. https://doi.org/10.1103/PhysRevE.62.2030 es_ES
dc.description.references Yakubovich, V. A., Leonov, G. A., Gelig, A. K., 2004. Stability of stationary sets in control systems with discontinuous nonlinearities. Series on Stability, Vibration and Control of Systems. World Scientific, New Jersey. https://doi.org/10.1142/5442 es_ES
dc.description.references Zhermolenko, V. N., 1980. Sobre el problema de Bulgakov referente a la desviación máxima de un sistema oscilatorio de segundo orden. Vestn. Mosk. Univ. Ser. 1: Mat. Mekh. 2, 87-91, [En ruso]. es_ES
dc.description.references Zhermolenko, V. N., 2007. Maximum deviation of oscillating system of the second order with external and parametric disturbances. Journal of Computer and Systems Sciences International 46, 407-411. https://doi.org/10.1134/S1064230707030094 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem