- -

Control predictivo en microrredes interconectadas y con vehículos eléctricos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control predictivo en microrredes interconectadas y con vehículos eléctricos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bordons, C. es_ES
dc.contributor.author Garcia-Torres, F. es_ES
dc.contributor.author Ridao, M.A. es_ES
dc.date.accessioned 2020-07-08T12:36:27Z
dc.date.available 2020-07-08T12:36:27Z
dc.date.issued 2020-07-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/147666
dc.description.abstract [ES] La microrred como elemento agregador de fuentes de generación, cargas y sistemas de almacenamiento de energía aparece como tecnología clave para dotar a los sistemas eléctricos de suficiente flexibilidad para una transición energética basada en fuentes renovables. Sin embargo, el problema de control para la gestión de energía se vuelve complejo cuando se incrementa el número de sistemas conectados a una misma microrred. De igual forma, se requiere flexibilidad para integrar a los vehículos eléctricos. La interacción entre las distintas microrredes y los vehículos hacen necesarias herramientas avanzadas de control para resolver el problema de optimización. El objeto del presente trabajo es presentar distintas herramientas de control predictivo basado en el modelo (Model Predictive Control, MPC) para resolver el problema de control asociado a este tipo de sistemas. En concreto, se abordan dos problemas: la conexión de vehículos eléctricos a la microrred y la interconexión de varias microrredes. Para el primer caso se analizan dos escenarios, según que el intercambio de energía sea uni o bidireccional y se presenta la forma de optimizar la operación usando MPC. En el segundo caso se aborda el problema usando técnicas de control distribuido. es_ES
dc.description.abstract [EN] Microgrids, as aggregators of sources, loads and energy storage systems, appear as key technology to provide the required flexibility to electric power systems to carry out an energy transition based on renewable sources. Nevertheless, the control problem becomes complex when the number of connected components to the same microgrid increases. Also, the system requires flexibility to integrate electric vehicles. The complexity given by the associated control problem to optimize the energy exchange between microgrids and the electric vehicles makes necessary the development of advanced control tools. In this work, dierent Model Predictive Control (MPC) strategies are introduced in order to face the challenge of the control problem formulation of this kind of systems. Specifically, two problems are addressed: the connection of electric vehicles to the microgrid and the interconnection of several microgrids. For the first case, two scenarios are analyzed, depending on whether the energy exchange is uni or bidirectional, the way to optimize the operation using MPC is presented and examples of use are shown. For the second case, the problem isaddressed using distributed control techniques. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Econom´ıa, Industria y Competitividad de Espana mediante el proyecto CONFIGURA (DPI2016-78338-R) y por la Comision Europea, en el proyecto AGERAR (0076- ´ AGERAR-6-E), dentro del programa Interreg Spain-Portugal (POCTEP). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Microgrids es_ES
dc.subject Control of renewable energy resources es_ES
dc.subject Dynamic interaction of power plants es_ES
dc.subject Predictive control es_ES
dc.subject Multiagent systems es_ES
dc.subject Smart grids es_ES
dc.subject Optimal operation and control of power systems es_ES
dc.subject Intelligent control of power systems es_ES
dc.subject Microrredes es_ES
dc.subject Control de recursos de energía renovable es_ES
dc.subject Interacción dinámica de plantas de potencia es_ES
dc.subject Control Predictivo es_ES
dc.subject Sistemas Multi-Agente es_ES
dc.subject Redes Inteligentes es_ES
dc.subject Operación óptima y control de sistemas de potencia es_ES
dc.subject Control inteligente de sistemas de potencia es_ES
dc.title Control predictivo en microrredes interconectadas y con vehículos eléctricos es_ES
dc.title.alternative Model predictive control of interconnected microgrids and electric vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13304
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-78338-R/ES/CONTROL PREDICTIVO DE MICRORREDES RECONFIGURABLES CON ALMACENAMIENTO HIBRIDO Y MOVIL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//0076-AGERAR-6-E/EU//AGERAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bordons, C.; Garcia-Torres, F.; Ridao, M. (2020). Control predictivo en microrredes interconectadas y con vehículos eléctricos. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.13304 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13304 es_ES
dc.description.upvformatpfin 253 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13304 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alvarado, I., Limon, D., de la Peña, D. M., Maestre, J., Ridao, M., Scheu, H., Marquardt, W., Negenborn, R., Schutter, B. D., Valencia, F., Espinosa, J., 2011. A comparative analysis of distributed mpc techniques applied to the hd-mpc four-tank benchmark. Journal of Process Control 21 (5), 800 - 815, special Issue on Hierarchical and Distributed Model Predictive Control. https://doi.org/10.1016/j.jprocont.2011.03.003 es_ES
dc.description.references Bashash, S., Fathy, H., 2011. Robust demand-side plug-in electric vehicle load control for renewable energy management. American Control Conference (ACC), 929-934. https://doi.org/10.1109/ACC.2011.5990856 es_ES
dc.description.references Bazmohammadi, N., Tahsiri, A., Anvari-Moghaddam, A., Guerrero, J. M., 2019. A hierarchical energy management strategy for interconnected microgrids considering uncertainty. International Journal of Electrical Power & Energy Systems 109, 597-608. https://doi.org/10.1016/j.ijepes.2019.02.033 es_ES
dc.description.references Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., 2016. Diagnosis and Fault-Tolerant Control. Springer. https://doi.org/10.1007/978-3-662-47943-8 es_ES
dc.description.references Bordons, C., Garcia-Torres, F., Ridao, M. A., 2020. Model Predictive Control of Microgrids. Springer, Londres. https://doi.org/10.1007/978-3-030-24570-2 es_ES
dc.description.references Bordons, C., Garcia-Torres, F., Valverde, L., 2015. Optimal energy management for renewable energy microgrids. Revista Iberoamericana de Automatica e Informatica industrial 12 (2), 117-132. https://doi.org/10.1016/j.riai.2015.03.001 es_ES
dc.description.references Bouzid, A., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P., Benghanem, M., 2015. A survey on control of electric power distributed generation systems for microgrid applications. Renewable and Sustainable Energy Reviews 44, 751 - 766. https://doi.org/10.1016/j.rser.2015.01.016 es_ES
dc.description.references Camponogara, E., Jia, D., Krogh, B. H., Talukdar, S., 2002. Distributed model predictive control. IEEE Control Systems 22 (1), 44-52. https://doi.org/10.1109/37.980246 es_ES
dc.description.references Cheng, P., Shi, L., Sinopoli, B., 2017. Special issue on secure control of cyberphysical systems. IEEE Trans on Control of Network Systems 4 (1). https://doi.org/10.1109/TCNS.2017.2667233 es_ES
dc.description.references Colson, C. M., Nehrir, M. H., 2013. Comprehensive real-time microgrid power management and control with distributed agents. IEEE Transactions on Smart Grid 4 (1), 617-627. https://doi.org/10.1109/TSG.2012.2236368 es_ES
dc.description.references Deilami, S., Masoum, A. S., Moses, P. S., Masoum, M., 2011. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. on Smart Grid 2 (3), 456-467. https://doi.org/10.1109/TSG.2011.2159816 es_ES
dc.description.references Duarte-Mermoud, M. A., Milla, F., 2018. Estabilizador de sistemas de potencia usando control predictivo basado en modelo. Revista Iberoamericana de Automática e Informática industrial 15 (3), 286-296. https://doi.org/10.4995/riai.2018.10056 es_ES
dc.description.references Fathi, M., Bevrani, H., 2013. Statistical cooperative power dispatching in interconnected microgrids. IEEE Transactions on Sustainable Energy 4 (3), 586-593. https://doi.org/10.1109/TSTE.2012.2232945 es_ES
dc.description.references Galus, M. D., Andersson, G., Art, S., 2012. A hierarchical, distributed pev charging control in low voltage distribution grids to ensure network security. Power and Energy Society General Meeting, 2012 IEEE, 1-8. https://doi.org/10.1109/PESGM.2012.6345024 es_ES
dc.description.references Garcia-Torres, F., Vilaplana, D. G., Bordons, C., Roncero-Sanchez, P., Ridao, M. A., 2018. Optimal management of microgrids with external agents including battery/fuel cell electric vehicles. IEEE Transactions on Smart Grid, 1-1. es_ES
dc.description.references Gautschi, M., Scheuss, O., Schluchter, C., 2009. Simulation of an agent based vehicle-to-grid (v2g) implementation. Electric Power Systems Research 120, 177 - 183. es_ES
dc.description.references Giorgio, A. D., Liberati, F., Canale, S., 2014. Electric vehicle charging control in smartgrids: A model predictive control approach. Control Engineering Practice 22, 147-162. https://doi.org/10.1016/j.conengprac.2013.10.005 es_ES
dc.description.references Guerrero, J. M., Chandorkar, M., Lee, T.-L., Loh, P. C., 2012a. Advanced control architectures for intelligent microgrids?part i: Decentralized and hierarchical control. IEEE Transactions on Industrial Electronics 60 (4), 1254-1262. https://doi.org/10.1109/TIE.2012.2194969 es_ES
dc.description.references Guerrero, J. M., Loh, P. C., Lee, T.-L., Chandorkar, M., 2012b. Advanced control architectures for intelligent microgrids?part ii: Power quality, energy storage, and ac/dc microgrids. IEEE Transactions on Industrial Electronics 60 (4), 1263-1270. https://doi.org/10.1109/TIE.2012.2196889 es_ES
dc.description.references Hu, J., You, S., Lind, M., Østergaard, J., 2014. Coordinated charging of electric vehicles for congestion prevention in the distribution grid. IEEE Transactions on Smart Grid 5 (2), 703-711. https://doi.org/10.1109/TSG.2013.2279007 es_ES
dc.description.references Issermann, R., 2006. Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer. es_ES
dc.description.references Ito, A., Kawashima, A., Suzuki, T., Inagaki, S., Yamaguchi, T., Zhou, Z., 2018. Model predictive charging control of in-vehicle batteries for home energy management based on vehicle state prediction. IEEE Transactions on Control Systems Technology 26 (1), 51-64. https://doi.org/10.1109/TCST.2017.2664727 es_ES
dc.description.references Lasseter, R. H., 2002. Microgrids. IEEE Power Engineering Society Winter Meeting 1, 305-308. es_ES
dc.description.references Lasseter, R. H., 2011. Smart distribution: Coupled microgrids. Proceedings of the IEEE 99 (6), 1074-1082. https://doi.org/10.1109/JPROC.2011.2114630 es_ES
dc.description.references Maestre, J. M., Negenborn, R. R., 2014. Distributed Model Predictive Control Made Easy. Springer-Verlag, London. https://doi.org/10.1007/978-94-007-7006-5 es_ES
dc.description.references Mendes, P., Valverde, L., Bordons, C., Normey-Rico, J., 2016. Energy management of an experimental microgrid coupled to a v2g system. Journal of Power Sources 327, 702 - 713. https://doi.org/10.1016/j.jpowsour.2016.07.076 es_ES
dc.description.references Mesbah, A., Dec 2016. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine 36 (6), 30-44. https://doi.org/10.1109/MCS.2016.2602087 es_ES
dc.description.references Mohsenian-Rad, H., et al., 2015. Optimal charging of electric vehicles with uncertain departure times: A closed-form solution. IEEE Transactions on Smart Grid 6 (2), 940-942. https://doi.org/10.1109/TSG.2014.2367242 es_ES
dc.description.references Mou, Y., Xing, H., Lin, Z., Fu, M., 2015. Decentralized optimal demand-side management for phev charging in a smart grid. IEEE Transactions on Smart Grid 6 (2), 726-736. https://doi.org/10.1109/TSG.2014.2363096 es_ES
dc.description.references Mwasilu, F., Justo, J. J., Kim, E.-K., Do, T. D., Jung, J.-W., 2014. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and sustainable energy reviews 34, 501-516. https://doi.org/10.1016/j.rser.2014.03.031 es_ES
dc.description.references N. Nikmehr and S. N. Ravadanegh, 2016. Reliability evaluation of multimicrogrids considering optimal operation of small scale energy zones under load-generation uncertainties. International Journal of Electrical Power & Energy Systems 78, 80-87. https://doi.org/10.1016/j.ijepes.2015.11.094 es_ES
dc.description.references Negenborn, R. R., Houwing, M., Schutter, B. D., Hellendoorn, J., 2009. Model predictive control for residential energy resources using a mixed-logical dynamic model. International Conference on Networking, Sensing and Control, 702-707. https://doi.org/10.1109/ICNSC.2009.4919363 es_ES
dc.description.references Nunna, H. K., Doolla, S., 2012. Multiagent-based distributed-energy-resource management for intelligent microgrids. IEEE Transactions on IndustrialElectronics 60 (4), 1678-1687. https://doi.org/10.1109/TIE.2012.2193857 es_ES
dc.description.references Ouammi, A., Dagdougui, H., Sacile, R., 2015. Optimal control of power flows and energy local storages in a network of microgrids modeled as a system of systems. IEEE Transactions on Control Systems Technology 23 (1), 128-138. https://doi.org/10.1109/TCST.2014.2314474 es_ES
dc.description.references Pahasa, J., Ngamroo, I., 2015. Phevs bidirectional charging/discharging and soc control for microgrid frequency stabilization using multiple mpc. IEEE Transactions on Smart Grid 6 (2), 526-533. https://doi.org/10.1109/TSG.2014.2372038 es_ES
dc.description.references Parisio, A., Rikos, E., Glielmo, L., 2014. A model predictive control approach to microgrid operation optimization. IEEE Transactions on Control Systems Technology 22 (5), 1813-1827. https://doi.org/10.1109/TCST.2013.2295737 es_ES
dc.description.references Parisio, A., Rikos, E., Glielmo, L., 2016. Stochastic model predictive control for economic/environmental operation management of microgrids: An experimental case study. Journal of Process Control 43, 24 - 37. https://doi.org/10.1016/j.jprocont.2016.04.008 es_ES
dc.description.references Reddy, S. S., Sandeep, V., Jung, C., Jun 2017. Review of stochastic optimization methods for smart grid. Frontiers in Energy 11 (2), 197-209. https://doi.org/10.1007/s11708-017-0457-7 es_ES
dc.description.references Sandberg, H., Amin, S., Johansson, K., 2015. Special issue on cyberphysical security in networked control systems. IEEE Control Syst. Mag. 35 (1). https://doi.org/10.1109/MCS.2014.2364693 es_ES
dc.description.references Scattolini, R., 2009. Architectures for distributed and hierarchical model predictive control - a review. Journal of Process Control 19, 723 - 731. https://doi.org/10.1016/j.jprocont.2009.02.003 es_ES
dc.description.references UNFCCC, 2015. Adoption of the paris agreement fccc/cp/2015/l. 9/rev. 1. 1. es_ES
dc.description.references Valverde, L., Bordons, C., Rosa, F., Jan 2016. Integration of fuel cell technologies in renewable-energy-based microgrids optimizing operational costs and durability. IEEE Transactions on Industrial Electronics 63 (1), 167-177. https://doi.org/10.1109/TIE.2015.2465355 es_ES
dc.description.references Venkat, A., Rawlings, J., Wright, S., 2007. ch. Distributed Model Predictive Control of Large-Scale Systems Assessment and Future Directions. Springer-Verlag, Berlin. es_ES
dc.description.references Wang, G., Zhao, J., Wen, F., Xue, Y., Ledwich, G., 2015. Dispatch strategy of phevs to mitigate selected patterns of seasonally varying outputs from renewable generation. IEEE Transactions on Smart Grid 6 (2), 627-639. https://doi.org/10.1109/TSG.2014.2364235 es_ES
dc.description.references Wu, J., Guan, X., 2013. Coordinated multi-microgrids optimal control algorithm for smart distribution management system. IEEE Transactions on Smart Grid 4 (4), 2174-2181. https://doi.org/10.1109/TSG.2013.2269481 es_ES
dc.description.references Xu, J., Zou, Y., Niu, Y., 2013. Distributed predictive control for energy management of multi-microgrids systems. In: 13th IFAC Symposium on Large Scale Complex Systems: Theory ans Applications, Shanghai, China. pp. 551-556. https://doi.org/10.3182/20130708-3-CN-2036.00090 es_ES
dc.description.references Yazdanian, M., Mehrizi-Sani, A., 2014. Distributed control techniques in microgrids. IEEE Transactions on Smart Grid 5 (6), 2901-2909. https://doi.org/10.1109/TSG.2014.2337838 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem