J. G. de Vries and C. J.Elsevier , Handbook of homogeneous hydrogenations , Wiley-VCH , New York , 2007
Monfette, S., Turner, Z. R., Semproni, S. P., & Chirik, P. J. (2012). Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 134(10), 4561-4564. doi:10.1021/ja300503k
Gärtner, D., Welther, A., Rad, B. R., Wolf, R., & Jacobi von Wangelin, A. (2014). Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations. Angewandte Chemie International Edition, 53(14), 3722-3726. doi:10.1002/anie.201308967
[+]
J. G. de Vries and C. J.Elsevier , Handbook of homogeneous hydrogenations , Wiley-VCH , New York , 2007
Monfette, S., Turner, Z. R., Semproni, S. P., & Chirik, P. J. (2012). Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 134(10), 4561-4564. doi:10.1021/ja300503k
Gärtner, D., Welther, A., Rad, B. R., Wolf, R., & Jacobi von Wangelin, A. (2014). Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations. Angewandte Chemie International Edition, 53(14), 3722-3726. doi:10.1002/anie.201308967
Hudson, R., Hamasaka, G., Osako, T., Yamada, Y. M. A., Li, C.-J., Uozumi, Y., & Moores, A. (2013). Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 15(8), 2141. doi:10.1039/c3gc40789f
Stein, M., Wieland, J., Steurer, P., Tölle, F., Mülhaupt, R., & Breit, B. (2011). Iron Nanoparticles Supported on Chemically-Derived Graphene: Catalytic Hydrogenation with Magnetic Catalyst Separation. Advanced Synthesis & Catalysis, 353(4), 523-527. doi:10.1002/adsc.201000877
Mondal, J., Nguyen, K. T., Jana, A., Kurniawan, K., Borah, P., Zhao, Y., & Bhaumik, A. (2014). Efficient alkene hydrogenation over a magnetically recoverable and recyclable Fe3O4@GO nanocatalyst using hydrazine hydrate as the hydrogen source. Chem. Commun., 50(81), 12095-12097. doi:10.1039/c4cc04770b
Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197
Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291
Furst, A., Berlo, R. C., & Hooton, S. (1965). Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chemical Reviews, 65(1), 51-68. doi:10.1021/cr60233a002
Shi, Q., Lu, R., Lu, L., Fu, X., & Zhao, D. (2007). Efficient Reduction of Nitroarenes over Nickel-Iron Mixed Oxide Catalyst Prepared from a Nickel-Iron Hydrotalcite Precursor. Advanced Synthesis & Catalysis, 349(11-12), 1877-1881. doi:10.1002/adsc.200700070
Li, H., Li, F., & Frett, B. (2014). Selective Reduction of Halogenated Nitroarenes with Hydrazine Hydrate in the Presence of Pd/C. Synlett, 25(10), 1403-1408. doi:10.1055/s-0033-1339025
Wu, S., Wen, G., Schlögl, R., & Su, D. S. (2015). Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction. Physical Chemistry Chemical Physics, 17(3), 1567-1571. doi:10.1039/c4cp04658g
Lin, Y., Wu, S., Shi, W., Zhang, B., Wang, J., Kim, Y. A., … Su, D. S. (2015). Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 51(66), 13086-13089. doi:10.1039/c5cc01963j
Wu, S., Wen, G., Liu, X., Zhong, B., & Su, D. S. (2014). Model Molecules with Oxygenated Groups Catalyze the Reduction of Nitrobenzene: Insight into Carbocatalysis. ChemCatChem, 6(6), 1558-1561. doi:10.1002/cctc.201402070
Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366
Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653
Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018
Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110(11), 5029-5036. doi:10.1063/1.478401
Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522
Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a
Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763
Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017
Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g
Esteve-Adell, I., Crapart, B., Primo, A., Serp, P., & Garcia, H. (2017). Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 19(13), 3061-3068. doi:10.1039/c7gc01058c
Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g
Murray, A. T., & Surendranath, Y. (2017). Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation. ACS Catalysis, 7(5), 3307-3312. doi:10.1021/acscatal.7b00395
Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118v
Deng, D., Novoselov, K. S., Fu, Q., Zheng, N., Tian, Z., & Bao, X. (2016). Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 11(3), 218-230. doi:10.1038/nnano.2015.340
Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h
D. J. Pasto , R. T.Taylor , D. J.Pasto and R. T.Taylor , Organic Reactions , John Wiley & Sons, Inc. , Hoboken, NJ, USA , 1991 , pp. 91–155
Serna, P., & Corma, A. (2015). Transforming Nano Metal Nonselective Particulates into Chemoselective Catalysts for Hydrogenation of Substituted Nitrobenzenes. ACS Catalysis, 5(12), 7114-7121. doi:10.1021/acscatal.5b01846
Banerjee, S., Balasanthiran, V., Koodali, R. T., & Sereda, G. A. (2010). Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Organic & Biomolecular Chemistry, 8(19), 4316. doi:10.1039/c0ob00183j
Monguchi, Y., Marumoto, T., Ichikawa, T., Miyake, Y., Nagae, Y., Yoshida, M., … Sajiki, H. (2015). Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 7(14), 2155-2160. doi:10.1002/cctc.201500193
Perosa, A., Tundo, P., & Zinovyev, S. (2002). Mild catalytic multiphase hydrogenolysis of benzyl ethers. Green Chemistry, 4(5), 492-494. doi:10.1039/b206838a
Salonen, L. M., Ellermann, M., & Diederich, F. (2011). Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angewandte Chemie International Edition, 50(21), 4808-4842. doi:10.1002/anie.201007560
Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis
configurations. Journal of the American Oil Chemists’ Society, 67(12), 940-946. doi:10.1007/bf02541853
[-]