- -

Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine

Show simple item record

Files in this item

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author He, Jinbao es_ES
dc.contributor.author Franconetti, Antonio es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-07-09T03:32:01Z
dc.date.available 2020-07-09T03:32:01Z
dc.date.issued 2018-03-21 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147682
dc.description.abstract [EN] A series of defective graphenes containing or not containing N, B, S and other heteroatoms exhibited general activity as metal-free catalysts for the hydrogenation of C=C double bonds by hydrazine in the presence of oxygen. The best-performing graphene was the one obtained from the pyrolysis of alginate and subsequent exfoliation by sonication. The material was reusable in three consecutive runs without decay in its catalytic activity, and it exhibited 99% chemoselectivity for C=C double bonds vs. nitro group hydrogenation in contrast with conventional Pd supported on carbon, which was almost unselective. Theoretical calculations using a model for defective graphene for styrene hydrogenation showed adsorption of the substrate by - stacking, resulting in activation of the double bond and direct interaction of cis-diimide with the C=C group. es_ES
dc.description.sponsorship AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Program. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683, Grapas and CTQ2015-69563-CO2-1) and Generalitat Valenciana (Prometeo2017-083) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation DST/EMR/2016/006500 es_ES
dc.relation MINECO/CTQ2015-69563-CO2-R1 es_ES
dc.relation MINECO/SEV-2016-0683 es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEO/2017/083 es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Alkene hydrogenation es_ES
dc.subject Aerobic oxidation es_ES
dc.subject Doped graphene es_ES
dc.subject Density functionals es_ES
dc.subject Biomass wastes es_ES
dc.subject Reduction es_ES
dc.subject Efficient es_ES
dc.subject Nitroarenes es_ES
dc.subject Oxide es_ES
dc.subject Chemistry es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cy02404e es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; He, J.; Franconetti, A.; Asiri, AM.; Primo Arnau, AM.; García Gómez, H. (2018). Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine. Catalysis Science & Technology. 8(6):1589-1598. https://doi.org/10.1039/c7cy02404e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cy02404e es_ES
dc.description.upvformatpinicio 1589 es_ES
dc.description.upvformatpfin 1598 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\382641 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder University Grants Commission, India es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Department of Science and Technology, India es_ES
dc.relation.references J. G. de Vries and C. J.Elsevier , Handbook of homogeneous hydrogenations , Wiley-VCH , New York , 2007 es_ES
dc.relation.references Monfette, S., Turner, Z. R., Semproni, S. P., & Chirik, P. J. (2012). Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 134(10), 4561-4564. doi:10.1021/ja300503k es_ES
dc.relation.references Gärtner, D., Welther, A., Rad, B. R., Wolf, R., & Jacobi von Wangelin, A. (2014). Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations. Angewandte Chemie International Edition, 53(14), 3722-3726. doi:10.1002/anie.201308967 es_ES
dc.relation.references Hudson, R., Hamasaka, G., Osako, T., Yamada, Y. M. A., Li, C.-J., Uozumi, Y., & Moores, A. (2013). Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 15(8), 2141. doi:10.1039/c3gc40789f es_ES
dc.relation.references Stein, M., Wieland, J., Steurer, P., Tölle, F., Mülhaupt, R., & Breit, B. (2011). Iron Nanoparticles Supported on Chemically-Derived Graphene: Catalytic Hydrogenation with Magnetic Catalyst Separation. Advanced Synthesis & Catalysis, 353(4), 523-527. doi:10.1002/adsc.201000877 es_ES
dc.relation.references Mondal, J., Nguyen, K. T., Jana, A., Kurniawan, K., Borah, P., Zhao, Y., & Bhaumik, A. (2014). Efficient alkene hydrogenation over a magnetically recoverable and recyclable Fe3O4@GO nanocatalyst using hydrazine hydrate as the hydrogen source. Chem. Commun., 50(81), 12095-12097. doi:10.1039/c4cc04770b es_ES
dc.relation.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.relation.references Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291 es_ES
dc.relation.references Furst, A., Berlo, R. C., & Hooton, S. (1965). Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chemical Reviews, 65(1), 51-68. doi:10.1021/cr60233a002 es_ES
dc.relation.references Shi, Q., Lu, R., Lu, L., Fu, X., & Zhao, D. (2007). Efficient Reduction of Nitroarenes over Nickel-Iron Mixed Oxide Catalyst Prepared from a Nickel-Iron Hydrotalcite Precursor. Advanced Synthesis & Catalysis, 349(11-12), 1877-1881. doi:10.1002/adsc.200700070 es_ES
dc.relation.references Li, H., Li, F., & Frett, B. (2014). Selective Reduction of Halogenated Nitroarenes with Hydrazine Hydrate in the Presence of Pd/C. Synlett, 25(10), 1403-1408. doi:10.1055/s-0033-1339025 es_ES
dc.relation.references Wu, S., Wen, G., Schlögl, R., & Su, D. S. (2015). Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction. Physical Chemistry Chemical Physics, 17(3), 1567-1571. doi:10.1039/c4cp04658g es_ES
dc.relation.references Lin, Y., Wu, S., Shi, W., Zhang, B., Wang, J., Kim, Y. A., … Su, D. S. (2015). Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 51(66), 13086-13089. doi:10.1039/c5cc01963j es_ES
dc.relation.references Wu, S., Wen, G., Liu, X., Zhong, B., & Su, D. S. (2014). Model Molecules with Oxygenated Groups Catalyze the Reduction of Nitrobenzene: Insight into Carbocatalysis. ChemCatChem, 6(6), 1558-1561. doi:10.1002/cctc.201402070 es_ES
dc.relation.references Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 es_ES
dc.relation.references Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 es_ES
dc.relation.references Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018 es_ES
dc.relation.references Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110(11), 5029-5036. doi:10.1063/1.478401 es_ES
dc.relation.references Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 es_ES
dc.relation.references Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a es_ES
dc.relation.references Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763 es_ES
dc.relation.references Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 es_ES
dc.relation.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.relation.references Esteve-Adell, I., Crapart, B., Primo, A., Serp, P., & Garcia, H. (2017). Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 19(13), 3061-3068. doi:10.1039/c7gc01058c es_ES
dc.relation.references Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g es_ES
dc.relation.references Murray, A. T., & Surendranath, Y. (2017). Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation. ACS Catalysis, 7(5), 3307-3312. doi:10.1021/acscatal.7b00395 es_ES
dc.relation.references Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118v es_ES
dc.relation.references Deng, D., Novoselov, K. S., Fu, Q., Zheng, N., Tian, Z., & Bao, X. (2016). Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 11(3), 218-230. doi:10.1038/nnano.2015.340 es_ES
dc.relation.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h es_ES
dc.relation.references D. J. Pasto , R. T.Taylor , D. J.Pasto and R. T.Taylor , Organic Reactions , John Wiley & Sons, Inc. , Hoboken, NJ, USA , 1991 , pp. 91–155 es_ES
dc.relation.references Serna, P., & Corma, A. (2015). Transforming Nano Metal Nonselective Particulates into Chemoselective Catalysts for Hydrogenation of Substituted Nitrobenzenes. ACS Catalysis, 5(12), 7114-7121. doi:10.1021/acscatal.5b01846 es_ES
dc.relation.references Banerjee, S., Balasanthiran, V., Koodali, R. T., & Sereda, G. A. (2010). Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Organic & Biomolecular Chemistry, 8(19), 4316. doi:10.1039/c0ob00183j es_ES
dc.relation.references Monguchi, Y., Marumoto, T., Ichikawa, T., Miyake, Y., Nagae, Y., Yoshida, M., … Sajiki, H. (2015). Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 7(14), 2155-2160. doi:10.1002/cctc.201500193 es_ES
dc.relation.references Perosa, A., Tundo, P., & Zinovyev, S. (2002). Mild catalytic multiphase hydrogenolysis of benzyl ethers. Green Chemistry, 4(5), 492-494. doi:10.1039/b206838a es_ES
dc.relation.references Salonen, L. M., Ellermann, M., & Diederich, F. (2011). Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angewandte Chemie International Edition, 50(21), 4808-4842. doi:10.1002/anie.201007560 es_ES
dc.relation.references Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis configurations. Journal of the American Oil Chemists’ Society, 67(12), 940-946. doi:10.1007/bf02541853 es_ES


This item appears in the following Collection(s)

Show simple item record