Mostrar el registro sencillo del ítem
dc.contributor.author | Dhakshinamoorthy, Amarajothi![]() |
es_ES |
dc.contributor.author | He, Jinbao![]() |
es_ES |
dc.contributor.author | Franconetti, Antonio![]() |
es_ES |
dc.contributor.author | Asiri, Abdullah M.![]() |
es_ES |
dc.contributor.author | Primo Arnau, Ana Maria![]() |
es_ES |
dc.contributor.author | García Gómez, Hermenegildo![]() |
es_ES |
dc.date.accessioned | 2020-07-09T03:32:01Z | |
dc.date.available | 2020-07-09T03:32:01Z | |
dc.date.issued | 2018-03-21 | es_ES |
dc.identifier.issn | 2044-4753 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147682 | |
dc.description.abstract | [EN] A series of defective graphenes containing or not containing N, B, S and other heteroatoms exhibited general activity as metal-free catalysts for the hydrogenation of C=C double bonds by hydrazine in the presence of oxygen. The best-performing graphene was the one obtained from the pyrolysis of alginate and subsequent exfoliation by sonication. The material was reusable in three consecutive runs without decay in its catalytic activity, and it exhibited 99% chemoselectivity for C=C double bonds vs. nitro group hydrogenation in contrast with conventional Pd supported on carbon, which was almost unselective. Theoretical calculations using a model for defective graphene for styrene hydrogenation showed adsorption of the substrate by - stacking, resulting in activation of the double bond and direct interaction of cis-diimide with the C=C group. | es_ES |
dc.description.sponsorship | AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Program. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683, Grapas and CTQ2015-69563-CO2-1) and Generalitat Valenciana (Prometeo2017-083) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation | MINECO/CTQ2015-69563-CO2-R1 | es_ES |
dc.relation.ispartof | Catalysis Science & Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Alkene hydrogenation | es_ES |
dc.subject | Aerobic oxidation | es_ES |
dc.subject | Doped graphene | es_ES |
dc.subject | Density functionals | es_ES |
dc.subject | Biomass wastes | es_ES |
dc.subject | Reduction | es_ES |
dc.subject | Efficient | es_ES |
dc.subject | Nitroarenes | es_ES |
dc.subject | Oxide | es_ES |
dc.subject | Chemistry | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c7cy02404e | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Dhakshinamoorthy, A.; He, J.; Franconetti, A.; Asiri, AM.; Primo Arnau, AM.; García Gómez, H. (2018). Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine. Catalysis Science & Technology. 8(6):1589-1598. https://doi.org/10.1039/c7cy02404e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c7cy02404e | es_ES |
dc.description.upvformatpinicio | 1589 | es_ES |
dc.description.upvformatpfin | 1598 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\382641 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Department of Science and Technology, Ministry of Science and Technology, India | es_ES |
dc.description.references | J. G. de Vries and C. J.Elsevier , Handbook of homogeneous hydrogenations , Wiley-VCH , New York , 2007 | es_ES |
dc.description.references | Monfette, S., Turner, Z. R., Semproni, S. P., & Chirik, P. J. (2012). Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 134(10), 4561-4564. doi:10.1021/ja300503k | es_ES |
dc.description.references | Gärtner, D., Welther, A., Rad, B. R., Wolf, R., & Jacobi von Wangelin, A. (2014). Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations. Angewandte Chemie International Edition, 53(14), 3722-3726. doi:10.1002/anie.201308967 | es_ES |
dc.description.references | Hudson, R., Hamasaka, G., Osako, T., Yamada, Y. M. A., Li, C.-J., Uozumi, Y., & Moores, A. (2013). Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 15(8), 2141. doi:10.1039/c3gc40789f | es_ES |
dc.description.references | Stein, M., Wieland, J., Steurer, P., Tölle, F., Mülhaupt, R., & Breit, B. (2011). Iron Nanoparticles Supported on Chemically-Derived Graphene: Catalytic Hydrogenation with Magnetic Catalyst Separation. Advanced Synthesis & Catalysis, 353(4), 523-527. doi:10.1002/adsc.201000877 | es_ES |
dc.description.references | Mondal, J., Nguyen, K. T., Jana, A., Kurniawan, K., Borah, P., Zhao, Y., & Bhaumik, A. (2014). Efficient alkene hydrogenation over a magnetically recoverable and recyclable Fe3O4@GO nanocatalyst using hydrazine hydrate as the hydrogen source. Chem. Commun., 50(81), 12095-12097. doi:10.1039/c4cc04770b | es_ES |
dc.description.references | Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 | es_ES |
dc.description.references | Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291 | es_ES |
dc.description.references | Furst, A., Berlo, R. C., & Hooton, S. (1965). Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chemical Reviews, 65(1), 51-68. doi:10.1021/cr60233a002 | es_ES |
dc.description.references | Shi, Q., Lu, R., Lu, L., Fu, X., & Zhao, D. (2007). Efficient Reduction of Nitroarenes over Nickel-Iron Mixed Oxide Catalyst Prepared from a Nickel-Iron Hydrotalcite Precursor. Advanced Synthesis & Catalysis, 349(11-12), 1877-1881. doi:10.1002/adsc.200700070 | es_ES |
dc.description.references | Li, H., Li, F., & Frett, B. (2014). Selective Reduction of Halogenated Nitroarenes with Hydrazine Hydrate in the Presence of Pd/C. Synlett, 25(10), 1403-1408. doi:10.1055/s-0033-1339025 | es_ES |
dc.description.references | Wu, S., Wen, G., Schlögl, R., & Su, D. S. (2015). Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction. Physical Chemistry Chemical Physics, 17(3), 1567-1571. doi:10.1039/c4cp04658g | es_ES |
dc.description.references | Lin, Y., Wu, S., Shi, W., Zhang, B., Wang, J., Kim, Y. A., … Su, D. S. (2015). Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 51(66), 13086-13089. doi:10.1039/c5cc01963j | es_ES |
dc.description.references | Wu, S., Wen, G., Liu, X., Zhong, B., & Su, D. S. (2014). Model Molecules with Oxygenated Groups Catalyze the Reduction of Nitrobenzene: Insight into Carbocatalysis. ChemCatChem, 6(6), 1558-1561. doi:10.1002/cctc.201402070 | es_ES |
dc.description.references | Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018 | es_ES |
dc.description.references | Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110(11), 5029-5036. doi:10.1063/1.478401 | es_ES |
dc.description.references | Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522 | es_ES |
dc.description.references | Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111a | es_ES |
dc.description.references | Zhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763 | es_ES |
dc.description.references | Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Esteve-Adell, I., Crapart, B., Primo, A., Serp, P., & Garcia, H. (2017). Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 19(13), 3061-3068. doi:10.1039/c7gc01058c | es_ES |
dc.description.references | Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103g | es_ES |
dc.description.references | Murray, A. T., & Surendranath, Y. (2017). Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation. ACS Catalysis, 7(5), 3307-3312. doi:10.1021/acscatal.7b00395 | es_ES |
dc.description.references | Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118v | es_ES |
dc.description.references | Deng, D., Novoselov, K. S., Fu, Q., Zheng, N., Tian, Z., & Bao, X. (2016). Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 11(3), 218-230. doi:10.1038/nnano.2015.340 | es_ES |
dc.description.references | Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h | es_ES |
dc.description.references | D. J. Pasto , R. T.Taylor , D. J.Pasto and R. T.Taylor , Organic Reactions , John Wiley & Sons, Inc. , Hoboken, NJ, USA , 1991 , pp. 91–155 | es_ES |
dc.description.references | Serna, P., & Corma, A. (2015). Transforming Nano Metal Nonselective Particulates into Chemoselective Catalysts for Hydrogenation of Substituted Nitrobenzenes. ACS Catalysis, 5(12), 7114-7121. doi:10.1021/acscatal.5b01846 | es_ES |
dc.description.references | Banerjee, S., Balasanthiran, V., Koodali, R. T., & Sereda, G. A. (2010). Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Organic & Biomolecular Chemistry, 8(19), 4316. doi:10.1039/c0ob00183j | es_ES |
dc.description.references | Monguchi, Y., Marumoto, T., Ichikawa, T., Miyake, Y., Nagae, Y., Yoshida, M., … Sajiki, H. (2015). Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 7(14), 2155-2160. doi:10.1002/cctc.201500193 | es_ES |
dc.description.references | Perosa, A., Tundo, P., & Zinovyev, S. (2002). Mild catalytic multiphase hydrogenolysis of benzyl ethers. Green Chemistry, 4(5), 492-494. doi:10.1039/b206838a | es_ES |
dc.description.references | Salonen, L. M., Ellermann, M., & Diederich, F. (2011). Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angewandte Chemie International Edition, 50(21), 4808-4842. doi:10.1002/anie.201007560 | es_ES |
dc.description.references | Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis configurations. Journal of the American Oil Chemists’ Society, 67(12), 940-946. doi:10.1007/bf02541853 | es_ES |