- -

Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions

Mostrar el registro completo del ítem

Primo Arnau, AM.; Franconetti, A.; Magureanu, M.; Mandache, NB.; Bucur, C.; Rizescu, C.; Cojocaru, B.... (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry. 20(11):2611-2623. https://doi.org/10.1039/c7gc03397d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147683

Ficheros en el ítem

Metadatos del ítem

Título: Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions
Autor: Primo Arnau, Ana Maria Franconetti, Antonio Magureanu, Monica Mandache, Nicolae Bogdan Bucur, Cristina Rizescu, Cristina Cojocaru, Bogdan Parvulescu, Vasile I. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] H2 plasma has been used to generate carbon vacancies on reduced graphene oxide to increase its catalytic activity as a hydrogenation catalyst. A relationship between the power of the plasma treatment and the exposure ...[+]
Palabras clave: Graphitic carbon nitride , Oxygen reduction , Skeletal isomerization , Mechanisms , Defects
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c7gc03397d
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7gc03397d
Código del Proyecto:
info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/
info:eu-repo/grantAgreement/UEFISCDI//PN 16 47 01 04/
MINECO/CTQ2015-69563-CO2-R1
Agradecimientos:
Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-69563-CO2-R1 and Grapas) is gratefully acknowledged. AP thanks the Ministry for a Ramon y Cajal research associate contract. ...[+]
Tipo: Artículo

References

Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539

Stephan, D. W., & Erker, G. (2009). Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angewandte Chemie International Edition, 49(1), 46-76. doi:10.1002/anie.200903708

Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893. doi:10.1039/b800274f [+]
Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539

Stephan, D. W., & Erker, G. (2009). Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angewandte Chemie International Edition, 49(1), 46-76. doi:10.1002/anie.200903708

Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893. doi:10.1039/b800274f

Wang, Y., Wang, X., & Antonietti, M. (2011). Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51(1), 68-89. doi:10.1002/anie.201101182

Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347

Zhang, J., Qu, L., Shi, G., Liu, J., Chen, J., & Dai, L. (2015). N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie International Edition, 55(6), 2230-2234. doi:10.1002/anie.201510495

Kong, X., Sun, Z., Chen, M., Chen, C., & Chen, Q. (2013). Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 6(11), 3260. doi:10.1039/c3ee40918j

Hu, H., Xin, J. H., Hu, H., & Wang, X. (2015). Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Research, 8(12), 3992-4006. doi:10.1007/s12274-015-0902-z

Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197

Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291

Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b01996

Son, S., Holroyd, C., Clough, J., Horn, A., Koehler, S. P. K., & Casiraghi, C. (2016). Substrate dependence of graphene reactivity towards hydrogenation. Applied Physics Letters, 109(24), 243103. doi:10.1063/1.4971385

Tang, C., & Zhang, Q. (2017). Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Advanced Materials, 29(13), 1604103. doi:10.1002/adma.201604103

Tang, C., Wang, H.-F., Chen, X., Li, B.-Q., Hou, T.-Z., Zhang, B., … Wei, F. (2016). Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 28(32), 6845-6851. doi:10.1002/adma.201601406

Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., … Yao, X. (2016). Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 28(43), 9532-9538. doi:10.1002/adma.201602912

Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S., & Dai, L. (2016). Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 52(13), 2764-2767. doi:10.1039/c5cc09173j

Harpale, A., & Chew, H. B. (2017). Hydrogen-plasma patterning of multilayer graphene: Mechanisms and modeling. Carbon, 117, 82-91. doi:10.1016/j.carbon.2017.02.062

Harpale, A., Panesi, M., & Chew, H. B. (2016). Plasma-graphene interaction and its effects on nanoscale patterning. Physical Review B, 93(3). doi:10.1103/physrevb.93.035416

Felten, A., McManus, D., Rice, C., Nittler, L., Pireaux, J.-J., & Casiraghi, C. (2014). Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry. Applied Physics Letters, 105(18), 183104. doi:10.1063/1.4901226

Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2015). Etching mechanisms of graphene nanoribbons in downstream H2plasmas: insights from molecular dynamics simulations. Journal of Physics D: Applied Physics, 48(19), 195202. doi:10.1088/0022-3727/48/19/195202

Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2017). H+ ion-induced damage and etching of multilayer graphene in H2 plasmas. Journal of Applied Physics, 121(13), 133301. doi:10.1063/1.4979023

Delfour, L., Davydova, A., Despiau-Pujo, E., Cunge, G., Graves, D. B., & Magaud, L. (2016). Cleaning graphene: A first quantum/classical molecular dynamics approach. Journal of Applied Physics, 119(12), 125309. doi:10.1063/1.4945034

Despiau-Pujo, E., Davydova, A., Cunge, G., Delfour, L., Magaud, L., & Graves, D. B. (2013). Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. Journal of Applied Physics, 113(11), 114302. doi:10.1063/1.4794375

Despiau-Pujo, E., Davydova, A., Cunge, G., & Graves, D. B. (2015). Hydrogen Plasmas Processing of Graphene Surfaces. Plasma Chemistry and Plasma Processing, 36(1), 213-229. doi:10.1007/s11090-015-9683-0

Nieman, R., Das, A., Aquino, A. J. A., Amorim, R. G., Machado, F. B. C., & Lischka, H. (2017). Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen. Chemical Physics, 482, 346-354. doi:10.1016/j.chemphys.2016.08.007

Sastre, G., Forneli, A., Almasan, V., Parvulescu, V. I., & Garcia, H. (2017). Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Applied Catalysis A: General, 547, 52-59. doi:10.1016/j.apcata.2017.08.018

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017

Skowron, S. T., Lebedeva, I. V., Popov, A. M., & Bichoutskaia, E. (2015). Energetics of atomic scale structure changes in graphene. Chemical Society Reviews, 44(10), 3143-3176. doi:10.1039/c4cs00499j

Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., … Kaner, R. B. (2010). A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano, 4(7), 3845-3852. doi:10.1021/nn100511a

Lucchese, M. M., Stavale, F., Ferreira, E. H. M., Vilani, C., Moutinho, M. V. O., Capaz, R. B., … Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), 1592-1597. doi:10.1016/j.carbon.2009.12.057

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034

Su, C., Acik, M., Takai, K., Lu, J., Hao, S., Zheng, Y., … Ping Loh, K. (2012). Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 3(1). doi:10.1038/ncomms2315

Gholami, J., Manteghian, M., Badiei, A., Ueda, H., & Javanbakht, M. (2015). N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching. Luminescence, 31(1), 229-235. doi:10.1002/bio.2950

Zhang, C., Dabbs, D. M., Liu, L.-M., Aksay, I. A., Car, R., & Selloni, A. (2015). Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. The Journal of Physical Chemistry C, 119(32), 18167-18176. doi:10.1021/acs.jpcc.5b02727

Chu, H. Y., Rosynek, M. P., & Lunsford, J. H. (1998). Skeletal Isomerization of Hexane over Pt/H-Beta Zeolites: Is the Classical Mechanism Correct? Journal of Catalysis, 178(1), 352-362. doi:10.1006/jcat.1998.2136

EBITANI, K. (1991). Skeletal isomerization of hydrocarbons over zirconium oxide promoted by Platinum and Sulfate Ion. Journal of Catalysis, 130(1), 257-267. doi:10.1016/0021-9517(91)90108-g

Sazama, P., Pastvova, J., Rizescu, C., Tirsoaga, A., Parvulescu, V. I., Garcia, H., … Blechta, V. (2018). Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 8(3), 1779-1789. doi:10.1021/acscatal.7b04086

Oubal, M., Picaud, S., Rayez, M.-T., & Rayez, J.-C. (2012). Structure and reactivity of carbon multivacancies in graphene. Computational and Theoretical Chemistry, 990, 159-166. doi:10.1016/j.comptc.2012.01.008

Gürel, H. H., Özçelik, V. O., & Ciraci, S. (2014). Dissociative Adsorption of Molecules on Graphene and Silicene. The Journal of Physical Chemistry C, 118(47), 27574-27582. doi:10.1021/jp509260c

Chase, P. A., & Stephan, D. W. (2008). Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angewandte Chemie International Edition, 47(39), 7433-7437. doi:10.1002/anie.200802596

Cheng, G.-J., Zhang, X., Chung, L. W., Xu, L., & Wu, Y.-D. (2015). Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 137(5), 1706-1725. doi:10.1021/ja5112749

Coman, S. M., Podolean, I., Tudorache, M., Cojocaru, B., Parvulescu, V. I., Puche, M., & Garcia, H. (2017). Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications, 53(74), 10271-10274. doi:10.1039/c7cc05105k

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem