- -

Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Primo Arnau, Ana Maria es_ES
dc.contributor.author Franconetti, Antonio es_ES
dc.contributor.author Magureanu, Monica es_ES
dc.contributor.author Mandache, Nicolae Bogdan es_ES
dc.contributor.author Bucur, Cristina es_ES
dc.contributor.author Rizescu, Cristina es_ES
dc.contributor.author Cojocaru, Bogdan es_ES
dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-07-09T03:32:04Z
dc.date.available 2020-07-09T03:32:04Z
dc.date.issued 2018-06-07 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147683
dc.description.abstract [EN] H2 plasma has been used to generate carbon vacancies on reduced graphene oxide to increase its catalytic activity as a hydrogenation catalyst. A relationship between the power of the plasma treatment and the exposure time with the activity of the material was observed for CvC double bond hydrogenation. The activity data in the case of 1-octene, showing skeletal isomerization besides hydrogenation, indicate that H2 plasma treatment can introduce hydrogenating and acid sites rendering a bifunctional catalyst that is reminiscent of the activity of noble metals supported on acid supports. es_ES
dc.description.sponsorship Financial support from the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2015-69563-CO2-R1 and Grapas) is gratefully acknowledged. AP thanks the Ministry for a Ramon y Cajal research associate contract. AFG thanks the Center of Supercomputing of Galicia (CESGA) for the computational facilities. MM acknowledges financial support from the PN 16 47 01 04 project. VIP kindly acknowledges UEFISCDI for financial support (project PN-III-P4-ID-PCE-2016-0146, No. 121/2017). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/CTQ2015-69563-CO2-R1 es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Graphitic carbon nitride es_ES
dc.subject Oxygen reduction es_ES
dc.subject Skeletal isomerization es_ES
dc.subject Mechanisms es_ES
dc.subject Defects es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7gc03397d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN 16 47 01 04/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Primo Arnau, AM.; Franconetti, A.; Magureanu, M.; Mandache, NB.; Bucur, C.; Rizescu, C.; Cojocaru, B.... (2018). Engineering active sites on reduced graphene oxide by hydrogen plasma irradiation: mimicking bifunctional metal/supported catalysts in hydrogenation reactions. Green Chemistry. 20(11):2611-2623. https://doi.org/10.1039/c7gc03397d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7gc03397d es_ES
dc.description.upvformatpinicio 2611 es_ES
dc.description.upvformatpfin 2623 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\382635 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539 es_ES
dc.description.references Stephan, D. W., & Erker, G. (2009). Frustrated Lewis Pairs: Metal-free Hydrogen Activation and More. Angewandte Chemie International Edition, 49(1), 46-76. doi:10.1002/anie.200903708 es_ES
dc.description.references Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893. doi:10.1039/b800274f es_ES
dc.description.references Wang, Y., Wang, X., & Antonietti, M. (2011). Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition, 51(1), 68-89. doi:10.1002/anie.201101182 es_ES
dc.description.references Dai, L., Xue, Y., Qu, L., Choi, H.-J., & Baek, J.-B. (2015). Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 115(11), 4823-4892. doi:10.1021/cr5003563 es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2014). Carbocatalysis by Graphene-Based Materials. Chemical Reviews, 114(12), 6179-6212. doi:10.1021/cr4007347 es_ES
dc.description.references Zhang, J., Qu, L., Shi, G., Liu, J., Chen, J., & Dai, L. (2015). N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Angewandte Chemie International Edition, 55(6), 2230-2234. doi:10.1002/anie.201510495 es_ES
dc.description.references Kong, X., Sun, Z., Chen, M., Chen, C., & Chen, Q. (2013). Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 6(11), 3260. doi:10.1039/c3ee40918j es_ES
dc.description.references Hu, H., Xin, J. H., Hu, H., & Wang, X. (2015). Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature. Nano Research, 8(12), 3992-4006. doi:10.1007/s12274-015-0902-z es_ES
dc.description.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.description.references Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291 es_ES
dc.description.references Primo, A., Parvulescu, V., & Garcia, H. (2016). Graphenes as Metal-Free Catalysts with Engineered Active Sites. The Journal of Physical Chemistry Letters, 8(1), 264-278. doi:10.1021/acs.jpclett.6b01996 es_ES
dc.description.references Son, S., Holroyd, C., Clough, J., Horn, A., Koehler, S. P. K., & Casiraghi, C. (2016). Substrate dependence of graphene reactivity towards hydrogenation. Applied Physics Letters, 109(24), 243103. doi:10.1063/1.4971385 es_ES
dc.description.references Tang, C., & Zhang, Q. (2017). Nanocarbon for Oxygen Reduction Electrocatalysis: Dopants, Edges, and Defects. Advanced Materials, 29(13), 1604103. doi:10.1002/adma.201604103 es_ES
dc.description.references Tang, C., Wang, H.-F., Chen, X., Li, B.-Q., Hou, T.-Z., Zhang, B., … Wei, F. (2016). Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 28(32), 6845-6851. doi:10.1002/adma.201601406 es_ES
dc.description.references Jia, Y., Zhang, L., Du, A., Gao, G., Chen, J., Yan, X., … Yao, X. (2016). Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 28(43), 9532-9538. doi:10.1002/adma.201602912 es_ES
dc.description.references Tao, L., Wang, Q., Dou, S., Ma, Z., Huo, J., Wang, S., & Dai, L. (2016). Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical Communications, 52(13), 2764-2767. doi:10.1039/c5cc09173j es_ES
dc.description.references Harpale, A., & Chew, H. B. (2017). Hydrogen-plasma patterning of multilayer graphene: Mechanisms and modeling. Carbon, 117, 82-91. doi:10.1016/j.carbon.2017.02.062 es_ES
dc.description.references Harpale, A., Panesi, M., & Chew, H. B. (2016). Plasma-graphene interaction and its effects on nanoscale patterning. Physical Review B, 93(3). doi:10.1103/physrevb.93.035416 es_ES
dc.description.references Felten, A., McManus, D., Rice, C., Nittler, L., Pireaux, J.-J., & Casiraghi, C. (2014). Insight into hydrogenation of graphene: Effect of hydrogen plasma chemistry. Applied Physics Letters, 105(18), 183104. doi:10.1063/1.4901226 es_ES
dc.description.references Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2015). Etching mechanisms of graphene nanoribbons in downstream H2plasmas: insights from molecular dynamics simulations. Journal of Physics D: Applied Physics, 48(19), 195202. doi:10.1088/0022-3727/48/19/195202 es_ES
dc.description.references Davydova, A., Despiau-Pujo, E., Cunge, G., & Graves, D. B. (2017). H+ ion-induced damage and etching of multilayer graphene in H2 plasmas. Journal of Applied Physics, 121(13), 133301. doi:10.1063/1.4979023 es_ES
dc.description.references Delfour, L., Davydova, A., Despiau-Pujo, E., Cunge, G., Graves, D. B., & Magaud, L. (2016). Cleaning graphene: A first quantum/classical molecular dynamics approach. Journal of Applied Physics, 119(12), 125309. doi:10.1063/1.4945034 es_ES
dc.description.references Despiau-Pujo, E., Davydova, A., Cunge, G., Delfour, L., Magaud, L., & Graves, D. B. (2013). Elementary processes of H2 plasma-graphene interaction: A combined molecular dynamics and density functional theory study. Journal of Applied Physics, 113(11), 114302. doi:10.1063/1.4794375 es_ES
dc.description.references Despiau-Pujo, E., Davydova, A., Cunge, G., & Graves, D. B. (2015). Hydrogen Plasmas Processing of Graphene Surfaces. Plasma Chemistry and Plasma Processing, 36(1), 213-229. doi:10.1007/s11090-015-9683-0 es_ES
dc.description.references Nieman, R., Das, A., Aquino, A. J. A., Amorim, R. G., Machado, F. B. C., & Lischka, H. (2017). Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen. Chemical Physics, 482, 346-354. doi:10.1016/j.chemphys.2016.08.007 es_ES
dc.description.references Sastre, G., Forneli, A., Almasan, V., Parvulescu, V. I., & Garcia, H. (2017). Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Applied Catalysis A: General, 547, 52-59. doi:10.1016/j.apcata.2017.08.018 es_ES
dc.description.references Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017 es_ES
dc.description.references Skowron, S. T., Lebedeva, I. V., Popov, A. M., & Bichoutskaia, E. (2015). Energetics of atomic scale structure changes in graphene. Chemical Society Reviews, 44(10), 3143-3176. doi:10.1039/c4cs00499j es_ES
dc.description.references Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., … Kaner, R. B. (2010). A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano, 4(7), 3845-3852. doi:10.1021/nn100511a es_ES
dc.description.references Lucchese, M. M., Stavale, F., Ferreira, E. H. M., Vilani, C., Moutinho, M. V. O., Capaz, R. B., … Jorio, A. (2010). Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon, 48(5), 1592-1597. doi:10.1016/j.carbon.2009.12.057 es_ES
dc.description.references Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558-1565. doi:10.1016/j.carbon.2007.02.034 es_ES
dc.description.references Su, C., Acik, M., Takai, K., Lu, J., Hao, S., Zheng, Y., … Ping Loh, K. (2012). Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications, 3(1). doi:10.1038/ncomms2315 es_ES
dc.description.references Gholami, J., Manteghian, M., Badiei, A., Ueda, H., & Javanbakht, M. (2015). N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching. Luminescence, 31(1), 229-235. doi:10.1002/bio.2950 es_ES
dc.description.references Zhang, C., Dabbs, D. M., Liu, L.-M., Aksay, I. A., Car, R., & Selloni, A. (2015). Combined Effects of Functional Groups, Lattice Defects, and Edges in the Infrared Spectra of Graphene Oxide. The Journal of Physical Chemistry C, 119(32), 18167-18176. doi:10.1021/acs.jpcc.5b02727 es_ES
dc.description.references Chu, H. Y., Rosynek, M. P., & Lunsford, J. H. (1998). Skeletal Isomerization of Hexane over Pt/H-Beta Zeolites: Is the Classical Mechanism Correct? Journal of Catalysis, 178(1), 352-362. doi:10.1006/jcat.1998.2136 es_ES
dc.description.references EBITANI, K. (1991). Skeletal isomerization of hydrocarbons over zirconium oxide promoted by Platinum and Sulfate Ion. Journal of Catalysis, 130(1), 257-267. doi:10.1016/0021-9517(91)90108-g es_ES
dc.description.references Sazama, P., Pastvova, J., Rizescu, C., Tirsoaga, A., Parvulescu, V. I., Garcia, H., … Blechta, V. (2018). Catalytic Properties of 3D Graphene-Like Microporous Carbons Synthesized in a Zeolite Template. ACS Catalysis, 8(3), 1779-1789. doi:10.1021/acscatal.7b04086 es_ES
dc.description.references Oubal, M., Picaud, S., Rayez, M.-T., & Rayez, J.-C. (2012). Structure and reactivity of carbon multivacancies in graphene. Computational and Theoretical Chemistry, 990, 159-166. doi:10.1016/j.comptc.2012.01.008 es_ES
dc.description.references Gürel, H. H., Özçelik, V. O., & Ciraci, S. (2014). Dissociative Adsorption of Molecules on Graphene and Silicene. The Journal of Physical Chemistry C, 118(47), 27574-27582. doi:10.1021/jp509260c es_ES
dc.description.references Chase, P. A., & Stephan, D. W. (2008). Hydrogen and Amine Activation by a Frustrated Lewis Pair of a Bulky N-Heterocyclic Carbene and B(C6F5)3. Angewandte Chemie International Edition, 47(39), 7433-7437. doi:10.1002/anie.200802596 es_ES
dc.description.references Cheng, G.-J., Zhang, X., Chung, L. W., Xu, L., & Wu, Y.-D. (2015). Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 137(5), 1706-1725. doi:10.1021/ja5112749 es_ES
dc.description.references Coman, S. M., Podolean, I., Tudorache, M., Cojocaru, B., Parvulescu, V. I., Puche, M., & Garcia, H. (2017). Graphene oxide as a catalyst for the diastereoselective transfer hydrogenation in the synthesis of prostaglandin derivatives. Chemical Communications, 53(74), 10271-10274. doi:10.1039/c7cc05105k es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem