- -

Heterogeneous catalysis based on supramolecular association

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Heterogeneous catalysis based on supramolecular association

Show full item record

Parvulescu, VI.; García Gómez, H. (2018). Heterogeneous catalysis based on supramolecular association. Catalysis Science & Technology. 8(19):4834-4857. https://doi.org/10.1039/c8cy01295d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147684

Files in this item

Item Metadata

Title: Heterogeneous catalysis based on supramolecular association
Author: Parvulescu, Vasile I. García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Heterogeneous catalysis is based mostly on materials built with strong covalent bonds. However, supramolecular aggregation in which individual components self-assemble due to non-covalent interactions to create a ...[+]
Subjects: Metal-Organic frameworks , Walled carbon nanotubes , Pi-Pi interactions , Ionic-Liquid , Noncovalent functionalization , Hydrogen evolution , Nanoparticles , Graphene , Surface , Efficient
Copyrigths: Reserva de todos los derechos
Catalysis Science & Technology. (issn: 2044-4753 )
DOI: 10.1039/c8cy01295d
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c8cy01295d
Project ID:
UEFISCDI/PN-III-P4-ID-PCE-2016-0146 121/2017
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. Prof Parvulescu thanks UEFISCDI ...[+]
Type: Artículo


J.-M. Lehn , Supramolecular chemistry , Vch , Weinheim , 1995

J. W. Steed , J. L.Atwood and P. A.Gale , Definition and emergence of supramolecular chemistry , Wiley Online Library , 2012

Herbst, S., Soberats, B., Leowanawat, P., Stolte, M., Lehmann, M., & Würthner, F. (2018). Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nature Communications, 9(1). doi:10.1038/s41467-018-05018-6 [+]
J.-M. Lehn , Supramolecular chemistry , Vch , Weinheim , 1995

J. W. Steed , J. L.Atwood and P. A.Gale , Definition and emergence of supramolecular chemistry , Wiley Online Library , 2012

Herbst, S., Soberats, B., Leowanawat, P., Stolte, M., Lehmann, M., & Würthner, F. (2018). Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nature Communications, 9(1). doi:10.1038/s41467-018-05018-6

Würthner, F., Thalacker, C., & Sautter, A. (1999). Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions. Advanced Materials, 11(9), 754-758. doi:10.1002/(sici)1521-4095(199906)11:9<754::aid-adma754>3.0.co;2-5

JELLEY, E. E. (1936). Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature, 138(3502), 1009-1010. doi:10.1038/1381009a0

Wang, J., Liu, D., Zhu, Y., Zhou, S., & Guan, S. (2018). Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 231, 251-261. doi:10.1016/j.apcatb.2018.03.026

Liebing, P., Pietrasiak, E., Otth, E., Kalim, J., Bornemann, D., & Togni, A. (2018). Supramolecular Aggregation of Perfluoroorganyl Iodane Reagents in the Solid State and in Solution. European Journal of Organic Chemistry, 2018(27-28), 3771-3781. doi:10.1002/ejoc.201800358

Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171-1178. doi:10.1038/nbt874

Balzani, V., Gómez-López, M., & Stoddart, J. F. (1998). Molecular Machines. Accounts of Chemical Research, 31(7), 405-414. doi:10.1021/ar970340y

Bai, C., & Liu, M. (2012). Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 7(4), 258-281. doi:10.1016/j.nantod.2012.05.002

Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599

Lehn, J.-M. (2007). From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev., 36(2), 151-160. doi:10.1039/b616752g

Sanders, J. K. M. (1998). Supramolecular Catalysis in Transition. Chemistry - A European Journal, 4(8), 1378-1383. doi:10.1002/(sici)1521-3765(19980807)4:8<1378::aid-chem1378>3.0.co;2-3

A. Lützen , Supramolecular Catalysis , ed. P. W. N. M. van Leeuwen , Wiley Online Library , 2008

Zhao, L., Sui, X.-L., Li, J.-Z., Zhang, J.-J., Zhang, L.-M., Huang, G.-S., & Wang, Z.-B. (2018). Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Applied Catalysis B: Environmental, 231, 224-233. doi:10.1016/j.apcatb.2018.03.020

Wang, X., Liu, Q., Yang, Q., Zhang, Z., & Fang, X. (2018). Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon, 136, 103-112. doi:10.1016/j.carbon.2018.04.059

Yao, Y., Wei, X., Cai, Y., Kong, X., Chen, J., Wu, J., & Shi, Y. (2018). Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. Journal of Colloid and Interface Science, 525, 48-53. doi:10.1016/j.jcis.2018.04.034

Leung, F. C.-M., Leung, S. Y.-L., Chung, C. Y.-S., & Yam, V. W.-W. (2016). Metal–Metal and π–π Interactions Directed End-to-End Assembly of Gold Nanorods. Journal of the American Chemical Society, 138(9), 2989-2992. doi:10.1021/jacs.6b01382

Lu, C., Zhang, M., Tang, D., Yan, X., Zhang, Z., Zhou, Z., … Stang, P. J. (2018). Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 140(24), 7674-7680. doi:10.1021/jacs.8b03781

Sun, Y., Li, S., Zhou, Z., Saha, M. L., Datta, S., Zhang, M., … Stang, P. J. (2017). Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 140(9), 3257-3263. doi:10.1021/jacs.7b10769

Du, P., Jaouen, M., Bocheux, A., Bourgogne, C., Han, Z., Bouchiat, V., … Attias, A.-J. (2014). Surface-Confined Self-Assembled Janus Tectons: A Versatile Platform towards the Noncovalent Functionalization of Graphene. Angewandte Chemie, 126(38), 10224-10230. doi:10.1002/ange.201403572

Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412

Qu, S., Li, M., Xie, L., Huang, X., Yang, J., Wang, N., & Yang, S. (2013). Noncovalent Functionalization of Graphene Attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. ACS Nano, 7(5), 4070-4081. doi:10.1021/nn4001963

Du, P., Bléger, D., Charra, F., Bouchiat, V., Kreher, D., Mathevet, F., & Attias, A.-J. (2015). A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons. Beilstein Journal of Nanotechnology, 6, 632-639. doi:10.3762/bjnano.6.64

Chefetz, B., Deshmukh, A. P., Hatcher, P. G., & Guthrie, E. A. (2000). Pyrene Sorption by Natural Organic Matter. Environmental Science & Technology, 34(14), 2925-2930. doi:10.1021/es9912877

Pan, B., & Xing, B. (2008). Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 42(24), 9005-9013. doi:10.1021/es801777n

Chen, J., Chen, W., & Zhu, D. (2008). Adsorption of Nonionic Aromatic Compounds to Single-Walled Carbon Nanotubes: Effects of Aqueous Solution Chemistry. Environmental Science & Technology, 42(19), 7225-7230. doi:10.1021/es801412j

Podeszwa, R. (2010). Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. The Journal of Chemical Physics, 132(4), 044704. doi:10.1063/1.3300064

Peris, E. (2016). Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 52(34), 5777-5787. doi:10.1039/c6cc02017h

Ruiz-Botella, S., & Peris, E. (2015). Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry - A European Journal, 21(43), 15263-15271. doi:10.1002/chem.201502948

Sabater, S., Mata, J. A., & Peris, E. (2014). Immobilization of Pyrene-Tagged Palladium and Ruthenium Complexes onto Reduced Graphene Oxide: An Efficient and Highly Recyclable Catalyst for Hydrodefluorination. Organometallics, 34(7), 1186-1190. doi:10.1021/om501040x

Sabater, S., Mata, J. A., & Peris, E. (2014). Catalyst Enhancement and Recyclability by Immobilization of Metal Complexes onto Graphene Surface by Noncovalent Interactions. ACS Catalysis, 4(6), 2038-2047. doi:10.1021/cs5003959

Wittmann, S., Schätz, A., Grass, R. N., Stark, W. J., & Reiser, O. (2010). A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angewandte Chemie International Edition, 49(10), 1867-1870. doi:10.1002/anie.200906166

Keller, M., Collière, V., Reiser, O., Caminade, A.-M., Majoral, J.-P., & Ouali, A. (2013). Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angewandte Chemie International Edition, 52(13), 3626-3629. doi:10.1002/anie.201209969

MISHRA, S., ARORA, S., NAGPAL, R., & SINGH CHAUHAN, S. M. (2014). Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene. Journal of Chemical Sciences, 126(6), 1729-1736. doi:10.1007/s12039-014-0731-8

Xing, L., Xie, J.-H., Chen, Y.-S., Wang, L.-X., & Zhou, Q.-L. (2008). Simply Modified Chiral Diphosphine: Catalyst Recyclingvia Non-covalent Absorption on Carbon Nanotubes. Advanced Synthesis & Catalysis, 350(7-8), 1013-1016. doi:10.1002/adsc.200700617

Che, G., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393(6683), 346-349. doi:10.1038/30694

Zhu, Z., Su, D., Weinberg, G., & Schlögl, R. (2004). Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 4(11), 2255-2259. doi:10.1021/nl048794t

Fukushima, T. (2003). Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 300(5628), 2072-2074. doi:10.1126/science.1082289

Tunckol, M., Durand, J., & Serp, P. (2012). Carbon nanomaterial–ionic liquid hybrids. Carbon, 50(12), 4303-4334. doi:10.1016/j.carbon.2012.05.017

Subramaniam, K., Das, A., & Heinrich, G. (2011). Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Composites Science and Technology, 71(11), 1441-1449. doi:10.1016/j.compscitech.2011.05.018

Chu, H., Shen, Y., Lin, L., Qin, X., Feng, G., Lin, Z., … Li, Y. (2010). Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 20(21), 3747-3752. doi:10.1002/adfm.201001240

Chun, Y. S., Shin, J. Y., Song, C. E., & Lee, S. (2008). Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun., (8), 942-944. doi:10.1039/b715463a

Salvo, A. M. P., La Parola, V., Liotta, L. F., Giacalone, F., & Gruttadauria, M. (2016). Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 81(5), 471-476. doi:10.1002/cplu.201600023

Park, H. S., Choi, B. G., Yang, S. H., Shin, W. H., Kang, J. K., Jung, D., & Hong, W. H. (2009). Ionic-Liquid-Assisted Sonochemical Synthesis of Carbon-Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small, 5(15), 1754-1760. doi:10.1002/smll.200900128

Noël, S., Léger, B., Ponchel, A., Philippot, K., Denicourt-Nowicki, A., Roucoux, A., & Monflier, E. (2014). Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 235, 20-32. doi:10.1016/j.cattod.2014.03.030

Wyrwalski, F., Léger, B., Lancelot, C., Roucoux, A., Monflier, E., & Ponchel, A. (2011). Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 391(1-2), 334-341. doi:10.1016/j.apcata.2010.07.006

Jean-Marie, A., Griboval-Constant, A., Khodakov, A. Y., Monflier, E., & Diehl, F. (2011). β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 47(38), 10767. doi:10.1039/c1cc13800f

Léger, B., Menuel, S., Ponchel, A., Hapiot, F., & Monflier, E. (2012). Nanoparticle-Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis & Catalysis, 354(7), 1269-1272. doi:10.1002/adsc.201100888

Zhang, J.-J., Ge, J.-M., Wang, H.-H., Wei, X., Li, X.-H., & Chen, J.-S. (2016). Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem, 8(22), 3441-3445. doi:10.1002/cctc.201601065

Qi, W., Liu, W., Liu, S., Zhang, B., Gu, X., Guo, X., & Su, D. (2014). Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solid-Acid Catalysts. ChemCatChem, 6(9), 2613-2620. doi:10.1002/cctc.201402270

Willner, B., Katz, E., & Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology, 17(6), 589-596. doi:10.1016/j.copbio.2006.10.008

Smalley, R. E., Li, Y., Moore, V. C., Price, B. K., Colorado, R., Schmidt, H. K., … Tour, J. M. (2006). Single Wall Carbon Nanotube Amplification:  En Route to a Type-Specific Growth Mechanism. Journal of the American Chemical Society, 128(49), 15824-15829. doi:10.1021/ja065767r

Jasti, R., Bhattacharjee, J., Neaton, J. B., & Bertozzi, C. R. (2008). Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society, 130(52), 17646-17647. doi:10.1021/ja807126u

Fort, E. H., Donovan, P. M., & Scott, L. T. (2009). Diels−Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. Journal of the American Chemical Society, 131(44), 16006-16007. doi:10.1021/ja907802g

Fort, E. H., & Scott, L. T. (2010). One-Step Conversion of Aromatic Hydrocarbon Bay Regions into Unsubstituted Benzene Rings: A Reagent for the Low-Temperature, Metal-Free Growth of Single-Chirality Carbon Nanotubes. Angewandte Chemie, 122(37), 6776-6778. doi:10.1002/ange.201002859

Lu, D., Cui, S., & Du, P. (2017). Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes. Synlett, 28(14), 1671-1677. doi:10.1055/s-0036-1588830

Niu, T., Wu, J., Ling, F., Jin, S., Lu, G., & Zhou, M. (2017). Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 34(1), 553-560. doi:10.1021/acs.langmuir.7b03796

Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254k

Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., & Tao, Z. (2014). Self-Assemblies Based on the «Outer-Surface Interactions» of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 47(4), 1386-1395. doi:10.1021/ar5000133

Wang, P., Wu, Y., Zhao, Y., Yu, Y., Zhang, M., & Cao, L. (2017). Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO2 adsorption. Chemical Communications, 53(40), 5503-5506. doi:10.1039/c7cc02074k

James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g

H.-C. Zhou , J. R.Long and O. M.Yaghi , Introduction to metal–organic frameworks , ACS Publications , 2012

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386

Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387a

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141

Noh, T. H., & Jung, O.-S. (2016). Recent Advances in Various Metal–Organic Channels for Photochemistry beyond Confined Spaces. Accounts of Chemical Research, 49(9), 1835-1843. doi:10.1021/acs.accounts.6b00291

Tabacchi, G. (2018). Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 19(11), 1249-1297. doi:10.1002/cphc.201701090

Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610

Tan, L.-L., Song, N., Zhang, S. X.-A., Li, H., Wang, B., & Yang, Y.-W. (2016). Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. Journal of Materials Chemistry B, 4(1), 135-140. doi:10.1039/c5tb01789k

Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923

Winter, A., Hager, M. D., Newkome, G. R., & Schubert, U. S. (2011). The Marriage of Terpyridines and Inorganic Nanoparticles: Synthetic Aspects, Characterization Techniques, and Potential Applications. Advanced Materials, 23(48), 5728-5748. doi:10.1002/adma.201103612

Ding, X., Gao, Y., Ye, L., Zhang, L., & Sun, L. (2015). Assembling Supramolecular Dye-Sensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 8(23), 3992-3995. doi:10.1002/cssc.201500313

Tajima, T., Sakata, W., Wada, T., Tsutsui, A., Nishimoto, S., Miyake, M., & Takaguchi, Y. (2011). Photosensitized Hydrogen Evolution from Water Using a Single-Walled Carbon Nanotube/Fullerodendron/SiO2 Coaxial Nanohybrid. Advanced Materials, 23(48), 5750-5754. doi:10.1002/adma.201103472

Ueda, Y., Takeda, H., Yui, T., Koike, K., Goto, Y., Inagaki, S., & Ishitani, O. (2014). A Visible-Light Harvesting System for CO2Reduction Using a RuII-ReIPhotocatalyst Adsorbed in Mesoporous Organosilica. ChemSusChem, 8(3), 439-442. doi:10.1002/cssc.201403194

Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., & Mashiko, S. (2001). Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature, 413(6856), 619-621. doi:10.1038/35098059

Barth, J. V., Costantini, G., & Kern, K. (2005). Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059), 671-679. doi:10.1038/nature04166

Klasovsky, F., Hohmeyer, J., Brückner, A., Bonifer, M., Arras, J., Steffan, M., … Claus, P. (2008). Catalytic and Mechanistic Investigation of Polyaniline Supported PtO2 Nanoparticles: A Combined in situ/operando EPR, DRIFTS, and EXAFS Study. The Journal of Physical Chemistry C, 112(49), 19555-19559. doi:10.1021/jp805970e

Nishiyama, F., Yokoyama, T., Kamikado, T., Yokoyama, S., Mashiko, S., Sakaguchi, K., & Kikuchi, K. (2007). Interstitial Accommodation of C60 in a Surface-Supported Supramolecular Network. Advanced Materials, 19(1), 117-120. doi:10.1002/adma.200601364

Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521s

Sun, J., Xu, J., Grafmueller, A., Huang, X., Liedel, C., Algara-Siller, G., … Shalom, M. (2017). Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 205, 1-10. doi:10.1016/j.apcatb.2016.12.030

Ishida, Y., Chabanne, L., Antonietti, M., & Shalom, M. (2014). Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 30(2), 447-451. doi:10.1021/la404101h

Zhang, J., Hao, J., Wei, Y., Xiao, F., Yin, P., & Wang, L. (2010). Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates. Journal of the American Chemical Society, 132(1), 14-15. doi:10.1021/ja907535g

Zheng, Y., Zhou, H., Liu, D., Floudas, G., Wagner, M., Koynov, K., … Ikeda, T. (2013). Supramolecular Thiophene Nanosheets. Angewandte Chemie, 125(18), 4945-4948. doi:10.1002/ange.201210090

Lee, E., Kim, J.-K., & Lee, M. (2009). Reversible Scrolling of Two-Dimensional Sheets from the Self-Assembly of Laterally Grafted Amphiphilic Rods. Angewandte Chemie International Edition, 48(20), 3657-3660. doi:10.1002/anie.200900079

Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J.-H., … Nishihara, H. (2013). π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 135(7), 2462-2465. doi:10.1021/ja312380b

Dong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., & Feng, X. (2015). Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 54(41), 12058-12063. doi:10.1002/anie.201506048

Han, Z., Zhao, Y., Peng, J., Tian, A., Feng, Y., & Liu, Q. (2005). Inorganic–organic hybrid polyoxometalate: Preparation, characterization and electrochemistry properties. Journal of Solid State Chemistry, 178(5), 1386-1394. doi:10.1016/j.jssc.2005.02.006

Wang, W., Chen, L.-J., Wang, X.-Q., Sun, B., Li, X., Zhang, Y., … Yang, H.-B. (2015). Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proceedings of the National Academy of Sciences, 112(18), 5597-5601. doi:10.1073/pnas.1500489112

Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h


This item appears in the following Collection(s)

Show full item record