- -

Heterogeneous catalysis based on supramolecular association

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Heterogeneous catalysis based on supramolecular association

Show simple item record

Files in this item

dc.contributor.author Parvulescu, Vasile I. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-07-09T03:32:07Z
dc.date.available 2020-07-09T03:32:07Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147684
dc.description.abstract [EN] Heterogeneous catalysis is based mostly on materials built with strong covalent bonds. However, supramolecular aggregation in which individual components self-assemble due to non-covalent interactions to create a larger entity offers also considerable potential for the preparation of materials with application in catalysis. The present article provides a perspective on the use of supramolecular aggregation for the development of heterogeneous catalysts. One of the main advantages of this approach is that the preparation procedure based on spontaneous self-assembly is frequently simpler than those that require the formation of covalent bonds. The emphasis in this article has been placed on the use in the preparation of heterogeneous catalysts of not only carbon materials, particularly graphene and carbon nanotubes, but also dendrimers and organic capsules. Examples of hybrid organic-inorganic materials such as mesoporous organosilicas, metal-organic frameworks and heteropolyacids are also briefly described. The purpose is to illustrate the breadth of the field and the diverse array of possibilities already developed to apply the concepts of supramolecular association in heterogeneous catalysis. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-R1) and Generalitat Valenciana (Prometeo 2017-083) is gratefully acknowledged. Prof Parvulescu thanks UEFISCDI for the Projects 121/2017 and 32PCCD1/2018. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metal-Organic frameworks es_ES
dc.subject Walled carbon nanotubes es_ES
dc.subject Pi-Pi interactions es_ES
dc.subject Ionic-Liquid es_ES
dc.subject Noncovalent functionalization es_ES
dc.subject Hydrogen evolution es_ES
dc.subject Nanoparticles es_ES
dc.subject Graphene es_ES
dc.subject Surface es_ES
dc.subject Efficient es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Heterogeneous catalysis based on supramolecular association es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cy01295d es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P4-ID-PCE-2016-0146 121%2F2017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//32PCCD1%2F2018/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F083/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Parvulescu, VI.; García Gómez, H. (2018). Heterogeneous catalysis based on supramolecular association. Catalysis Science & Technology. 8(19):4834-4857. https://doi.org/10.1039/c8cy01295d es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8cy01295d es_ES
dc.description.upvformatpinicio 4834 es_ES
dc.description.upvformatpfin 4857 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\382648 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references J.-M. Lehn , Supramolecular chemistry , Vch , Weinheim , 1995 es_ES
dc.description.references J. W. Steed , J. L.Atwood and P. A.Gale , Definition and emergence of supramolecular chemistry , Wiley Online Library , 2012 es_ES
dc.description.references Herbst, S., Soberats, B., Leowanawat, P., Stolte, M., Lehmann, M., & Würthner, F. (2018). Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases. Nature Communications, 9(1). doi:10.1038/s41467-018-05018-6 es_ES
dc.description.references Würthner, F., Thalacker, C., & Sautter, A. (1999). Hierarchical Organization of Functional Perylene Chromophores to Mesoscopic Superstructures by Hydrogen Bonding and π-π Interactions. Advanced Materials, 11(9), 754-758. doi:10.1002/(sici)1521-4095(199906)11:9<754::aid-adma754>3.0.co;2-5 es_ES
dc.description.references JELLEY, E. E. (1936). Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature, 138(3502), 1009-1010. doi:10.1038/1381009a0 es_ES
dc.description.references Wang, J., Liu, D., Zhu, Y., Zhou, S., & Guan, S. (2018). Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Applied Catalysis B: Environmental, 231, 251-261. doi:10.1016/j.apcatb.2018.03.026 es_ES
dc.description.references Liebing, P., Pietrasiak, E., Otth, E., Kalim, J., Bornemann, D., & Togni, A. (2018). Supramolecular Aggregation of Perfluoroorganyl Iodane Reagents in the Solid State and in Solution. European Journal of Organic Chemistry, 2018(27-28), 3771-3781. doi:10.1002/ejoc.201800358 es_ES
dc.description.references Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171-1178. doi:10.1038/nbt874 es_ES
dc.description.references Balzani, V., Gómez-López, M., & Stoddart, J. F. (1998). Molecular Machines. Accounts of Chemical Research, 31(7), 405-414. doi:10.1021/ar970340y es_ES
dc.description.references Bai, C., & Liu, M. (2012). Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today, 7(4), 258-281. doi:10.1016/j.nantod.2012.05.002 es_ES
dc.description.references Lehn, J.-M. (2002). Toward complex matter: Supramolecular chemistry and self-organization. Proceedings of the National Academy of Sciences, 99(8), 4763-4768. doi:10.1073/pnas.072065599 es_ES
dc.description.references Lehn, J.-M. (2007). From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev., 36(2), 151-160. doi:10.1039/b616752g es_ES
dc.description.references Sanders, J. K. M. (1998). Supramolecular Catalysis in Transition. Chemistry - A European Journal, 4(8), 1378-1383. doi:10.1002/(sici)1521-3765(19980807)4:8<1378::aid-chem1378>3.0.co;2-3 es_ES
dc.description.references A. Lützen , Supramolecular Catalysis , ed. P. W. N. M. van Leeuwen , Wiley Online Library , 2008 es_ES
dc.description.references Zhao, L., Sui, X.-L., Li, J.-Z., Zhang, J.-J., Zhang, L.-M., Huang, G.-S., & Wang, Z.-B. (2018). Supramolecular assembly promoted synthesis of three-dimensional nitrogen doped graphene frameworks as efficient electrocatalyst for oxygen reduction reaction and methanol electrooxidation. Applied Catalysis B: Environmental, 231, 224-233. doi:10.1016/j.apcatb.2018.03.020 es_ES
dc.description.references Wang, X., Liu, Q., Yang, Q., Zhang, Z., & Fang, X. (2018). Three-dimensional g-C3N4 aggregates of hollow bubbles with high photocatalytic degradation of tetracycline. Carbon, 136, 103-112. doi:10.1016/j.carbon.2018.04.059 es_ES
dc.description.references Yao, Y., Wei, X., Cai, Y., Kong, X., Chen, J., Wu, J., & Shi, Y. (2018). Hybrid supramolecular materials constructed from pillar[5]arene based host–guest interactions with photo and redox tunable properties. Journal of Colloid and Interface Science, 525, 48-53. doi:10.1016/j.jcis.2018.04.034 es_ES
dc.description.references Leung, F. C.-M., Leung, S. Y.-L., Chung, C. Y.-S., & Yam, V. W.-W. (2016). Metal–Metal and π–π Interactions Directed End-to-End Assembly of Gold Nanorods. Journal of the American Chemical Society, 138(9), 2989-2992. doi:10.1021/jacs.6b01382 es_ES
dc.description.references Lu, C., Zhang, M., Tang, D., Yan, X., Zhang, Z., Zhou, Z., … Stang, P. J. (2018). Fluorescent Metallacage-Core Supramolecular Polymer Gel Formed by Orthogonal Metal Coordination and Host–Guest Interactions. Journal of the American Chemical Society, 140(24), 7674-7680. doi:10.1021/jacs.8b03781 es_ES
dc.description.references Sun, Y., Li, S., Zhou, Z., Saha, M. L., Datta, S., Zhang, M., … Stang, P. J. (2017). Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. Journal of the American Chemical Society, 140(9), 3257-3263. doi:10.1021/jacs.7b10769 es_ES
dc.description.references Du, P., Jaouen, M., Bocheux, A., Bourgogne, C., Han, Z., Bouchiat, V., … Attias, A.-J. (2014). Surface-Confined Self-Assembled Janus Tectons: A Versatile Platform towards the Noncovalent Functionalization of Graphene. Angewandte Chemie, 126(38), 10224-10230. doi:10.1002/ange.201403572 es_ES
dc.description.references Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112(11), 6156-6214. doi:10.1021/cr3000412 es_ES
dc.description.references Qu, S., Li, M., Xie, L., Huang, X., Yang, J., Wang, N., & Yang, S. (2013). Noncovalent Functionalization of Graphene Attaching [6,6]-Phenyl-C61-butyric Acid Methyl Ester (PCBM) and Application as Electron Extraction Layer of Polymer Solar Cells. ACS Nano, 7(5), 4070-4081. doi:10.1021/nn4001963 es_ES
dc.description.references Du, P., Bléger, D., Charra, F., Bouchiat, V., Kreher, D., Mathevet, F., & Attias, A.-J. (2015). A versatile strategy towards non-covalent functionalization of graphene by surface-confined supramolecular self-assembly of Janus tectons. Beilstein Journal of Nanotechnology, 6, 632-639. doi:10.3762/bjnano.6.64 es_ES
dc.description.references Chefetz, B., Deshmukh, A. P., Hatcher, P. G., & Guthrie, E. A. (2000). Pyrene Sorption by Natural Organic Matter. Environmental Science & Technology, 34(14), 2925-2930. doi:10.1021/es9912877 es_ES
dc.description.references Pan, B., & Xing, B. (2008). Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 42(24), 9005-9013. doi:10.1021/es801777n es_ES
dc.description.references Chen, J., Chen, W., & Zhu, D. (2008). Adsorption of Nonionic Aromatic Compounds to Single-Walled Carbon Nanotubes: Effects of Aqueous Solution Chemistry. Environmental Science & Technology, 42(19), 7225-7230. doi:10.1021/es801412j es_ES
dc.description.references Podeszwa, R. (2010). Interactions of graphene sheets deduced from properties of polycyclic aromatic hydrocarbons. The Journal of Chemical Physics, 132(4), 044704. doi:10.1063/1.3300064 es_ES
dc.description.references Peris, E. (2016). Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences. Chemical Communications, 52(34), 5777-5787. doi:10.1039/c6cc02017h es_ES
dc.description.references Ruiz-Botella, S., & Peris, E. (2015). Unveiling the Importance of π-Stacking in Borrowing-Hydrogen Processes Catalysed by Iridium Complexes with Pyrene Tags. Chemistry - A European Journal, 21(43), 15263-15271. doi:10.1002/chem.201502948 es_ES
dc.description.references Sabater, S., Mata, J. A., & Peris, E. (2014). Immobilization of Pyrene-Tagged Palladium and Ruthenium Complexes onto Reduced Graphene Oxide: An Efficient and Highly Recyclable Catalyst for Hydrodefluorination. Organometallics, 34(7), 1186-1190. doi:10.1021/om501040x es_ES
dc.description.references Sabater, S., Mata, J. A., & Peris, E. (2014). Catalyst Enhancement and Recyclability by Immobilization of Metal Complexes onto Graphene Surface by Noncovalent Interactions. ACS Catalysis, 4(6), 2038-2047. doi:10.1021/cs5003959 es_ES
dc.description.references Wittmann, S., Schätz, A., Grass, R. N., Stark, W. J., & Reiser, O. (2010). A Recyclable Nanoparticle-Supported Palladium Catalyst for the Hydroxycarbonylation of Aryl Halides in Water. Angewandte Chemie International Edition, 49(10), 1867-1870. doi:10.1002/anie.200906166 es_ES
dc.description.references Keller, M., Collière, V., Reiser, O., Caminade, A.-M., Majoral, J.-P., & Ouali, A. (2013). Pyrene-Tagged Dendritic Catalysts Noncovalently Grafted onto Magnetic Co/C Nanoparticles: An Efficient and Recyclable System for Drug Synthesis. Angewandte Chemie International Edition, 52(13), 3626-3629. doi:10.1002/anie.201209969 es_ES
dc.description.references MISHRA, S., ARORA, S., NAGPAL, R., & SINGH CHAUHAN, S. M. (2014). Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene. Journal of Chemical Sciences, 126(6), 1729-1736. doi:10.1007/s12039-014-0731-8 es_ES
dc.description.references Xing, L., Xie, J.-H., Chen, Y.-S., Wang, L.-X., & Zhou, Q.-L. (2008). Simply Modified Chiral Diphosphine: Catalyst Recyclingvia Non-covalent Absorption on Carbon Nanotubes. Advanced Synthesis & Catalysis, 350(7-8), 1013-1016. doi:10.1002/adsc.200700617 es_ES
dc.description.references Che, G., Lakshmi, B. B., Fisher, E. R., & Martin, C. R. (1998). Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 393(6683), 346-349. doi:10.1038/30694 es_ES
dc.description.references Zhu, Z., Su, D., Weinberg, G., & Schlögl, R. (2004). Supermolecular Self-Assembly of Graphene Sheets:  Formation of Tube-in-Tube Nanostructures. Nano Letters, 4(11), 2255-2259. doi:10.1021/nl048794t es_ES
dc.description.references Fukushima, T. (2003). Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 300(5628), 2072-2074. doi:10.1126/science.1082289 es_ES
dc.description.references Tunckol, M., Durand, J., & Serp, P. (2012). Carbon nanomaterial–ionic liquid hybrids. Carbon, 50(12), 4303-4334. doi:10.1016/j.carbon.2012.05.017 es_ES
dc.description.references Subramaniam, K., Das, A., & Heinrich, G. (2011). Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Composites Science and Technology, 71(11), 1441-1449. doi:10.1016/j.compscitech.2011.05.018 es_ES
dc.description.references Chu, H., Shen, Y., Lin, L., Qin, X., Feng, G., Lin, Z., … Li, Y. (2010). Ionic-Liquid-Assisted Preparation of Carbon Nanotube-Supported Uniform Noble Metal Nanoparticles and Their Enhanced Catalytic Performance. Advanced Functional Materials, 20(21), 3747-3752. doi:10.1002/adfm.201001240 es_ES
dc.description.references Chun, Y. S., Shin, J. Y., Song, C. E., & Lee, S. (2008). Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun., (8), 942-944. doi:10.1039/b715463a es_ES
dc.description.references Salvo, A. M. P., La Parola, V., Liotta, L. F., Giacalone, F., & Gruttadauria, M. (2016). Highly Loaded Multi-Walled Carbon Nanotubes Non-Covalently Modified with a Bis-Imidazolium Salt and their Use as Catalyst Supports. ChemPlusChem, 81(5), 471-476. doi:10.1002/cplu.201600023 es_ES
dc.description.references Park, H. S., Choi, B. G., Yang, S. H., Shin, W. H., Kang, J. K., Jung, D., & Hong, W. H. (2009). Ionic-Liquid-Assisted Sonochemical Synthesis of Carbon-Nanotube-Based Nanohybrids: Control in the Structures and Interfacial Characteristics. Small, 5(15), 1754-1760. doi:10.1002/smll.200900128 es_ES
dc.description.references Noël, S., Léger, B., Ponchel, A., Philippot, K., Denicourt-Nowicki, A., Roucoux, A., & Monflier, E. (2014). Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 235, 20-32. doi:10.1016/j.cattod.2014.03.030 es_ES
dc.description.references Wyrwalski, F., Léger, B., Lancelot, C., Roucoux, A., Monflier, E., & Ponchel, A. (2011). Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 391(1-2), 334-341. doi:10.1016/j.apcata.2010.07.006 es_ES
dc.description.references Jean-Marie, A., Griboval-Constant, A., Khodakov, A. Y., Monflier, E., & Diehl, F. (2011). β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 47(38), 10767. doi:10.1039/c1cc13800f es_ES
dc.description.references Léger, B., Menuel, S., Ponchel, A., Hapiot, F., & Monflier, E. (2012). Nanoparticle-Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis & Catalysis, 354(7), 1269-1272. doi:10.1002/adsc.201100888 es_ES
dc.description.references Zhang, J.-J., Ge, J.-M., Wang, H.-H., Wei, X., Li, X.-H., & Chen, J.-S. (2016). Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem, 8(22), 3441-3445. doi:10.1002/cctc.201601065 es_ES
dc.description.references Qi, W., Liu, W., Liu, S., Zhang, B., Gu, X., Guo, X., & Su, D. (2014). Heteropoly Acid/Carbon Nanotube Hybrid Materials as Efficient Solid-Acid Catalysts. ChemCatChem, 6(9), 2613-2620. doi:10.1002/cctc.201402270 es_ES
dc.description.references Willner, B., Katz, E., & Willner, I. (2006). Electrical contacting of redox proteins by nanotechnological means. Current Opinion in Biotechnology, 17(6), 589-596. doi:10.1016/j.copbio.2006.10.008 es_ES
dc.description.references Smalley, R. E., Li, Y., Moore, V. C., Price, B. K., Colorado, R., Schmidt, H. K., … Tour, J. M. (2006). Single Wall Carbon Nanotube Amplification:  En Route to a Type-Specific Growth Mechanism. Journal of the American Chemical Society, 128(49), 15824-15829. doi:10.1021/ja065767r es_ES
dc.description.references Jasti, R., Bhattacharjee, J., Neaton, J. B., & Bertozzi, C. R. (2008). Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures. Journal of the American Chemical Society, 130(52), 17646-17647. doi:10.1021/ja807126u es_ES
dc.description.references Fort, E. H., Donovan, P. M., & Scott, L. T. (2009). Diels−Alder Reactivity of Polycyclic Aromatic Hydrocarbon Bay Regions: Implications for Metal-Free Growth of Single-Chirality Carbon Nanotubes. Journal of the American Chemical Society, 131(44), 16006-16007. doi:10.1021/ja907802g es_ES
dc.description.references Fort, E. H., & Scott, L. T. (2010). One-Step Conversion of Aromatic Hydrocarbon Bay Regions into Unsubstituted Benzene Rings: A Reagent for the Low-Temperature, Metal-Free Growth of Single-Chirality Carbon Nanotubes. Angewandte Chemie, 122(37), 6776-6778. doi:10.1002/ange.201002859 es_ES
dc.description.references Lu, D., Cui, S., & Du, P. (2017). Large π-Extension of Carbon Nanorings by Incorporating Hexa-peri-hexabenzocoronenes. Synlett, 28(14), 1671-1677. doi:10.1055/s-0036-1588830 es_ES
dc.description.references Niu, T., Wu, J., Ling, F., Jin, S., Lu, G., & Zhou, M. (2017). Halogen-Adatom Mediated Phase Transition of Two-Dimensional Molecular Self-Assembly on a Metal Surface. Langmuir, 34(1), 553-560. doi:10.1021/acs.langmuir.7b03796 es_ES
dc.description.references Lee, J. W., Samal, S., Selvapalam, N., Kim, H.-J., & Kim, K. (2003). Cucurbituril Homologues and Derivatives:  New Opportunities in Supramolecular Chemistry. Accounts of Chemical Research, 36(8), 621-630. doi:10.1021/ar020254k es_ES
dc.description.references Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., & Tao, Z. (2014). Self-Assemblies Based on the «Outer-Surface Interactions» of Cucurbit[n]urils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 47(4), 1386-1395. doi:10.1021/ar5000133 es_ES
dc.description.references Wang, P., Wu, Y., Zhao, Y., Yu, Y., Zhang, M., & Cao, L. (2017). Crystalline nanotubular framework constructed by cucurbit[8]uril for selective CO2 adsorption. Chemical Communications, 53(40), 5503-5506. doi:10.1039/c7cc02074k es_ES
dc.description.references James, S. L. (2003). Metal-organic frameworks. Chemical Society Reviews, 32(5), 276. doi:10.1039/b200393g es_ES
dc.description.references H.-C. Zhou , J. R.Long and O. M.Yaghi , Introduction to metal–organic frameworks , ACS Publications , 2012 es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2017). Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis. ACS Catalysis, 7(4), 2896-2919. doi:10.1021/acscatal.6b03386 es_ES
dc.description.references Dhakshinamoorthy, A., & Garcia, H. (2014). Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 7(9), 2392-2410. doi:10.1002/cssc.201402148 es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2014). Catalysis by metal–organic frameworks in water. Chem. Commun., 50(85), 12800-12814. doi:10.1039/c4cc04387a es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141 es_ES
dc.description.references Noh, T. H., & Jung, O.-S. (2016). Recent Advances in Various Metal–Organic Channels for Photochemistry beyond Confined Spaces. Accounts of Chemical Research, 49(9), 1835-1843. doi:10.1021/acs.accounts.6b00291 es_ES
dc.description.references Tabacchi, G. (2018). Supramolecular Organization in Confined Nanospaces. ChemPhysChem, 19(11), 1249-1297. doi:10.1002/cphc.201701090 es_ES
dc.description.references Haldar, R., Reddy, S. K., Suresh, V. M., Mohapatra, S., Balasubramanian, S., & Maji, T. K. (2014). Flexible and Rigid Amine-Functionalized Microporous Frameworks Based on Different Secondary Building Units: Supramolecular Isomerism, Selective CO2Capture, and Catalysis. Chemistry - A European Journal, 20(15), 4347-4356. doi:10.1002/chem.201303610 es_ES
dc.description.references Tan, L.-L., Song, N., Zhang, S. X.-A., Li, H., Wang, B., & Yang, Y.-W. (2016). Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. Journal of Materials Chemistry B, 4(1), 135-140. doi:10.1039/c5tb01789k es_ES
dc.description.references Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923 es_ES
dc.description.references Winter, A., Hager, M. D., Newkome, G. R., & Schubert, U. S. (2011). The Marriage of Terpyridines and Inorganic Nanoparticles: Synthetic Aspects, Characterization Techniques, and Potential Applications. Advanced Materials, 23(48), 5728-5748. doi:10.1002/adma.201103612 es_ES
dc.description.references Ding, X., Gao, Y., Ye, L., Zhang, L., & Sun, L. (2015). Assembling Supramolecular Dye-Sensitized Photoelectrochemical Cells for Water Splitting. ChemSusChem, 8(23), 3992-3995. doi:10.1002/cssc.201500313 es_ES
dc.description.references Tajima, T., Sakata, W., Wada, T., Tsutsui, A., Nishimoto, S., Miyake, M., & Takaguchi, Y. (2011). Photosensitized Hydrogen Evolution from Water Using a Single-Walled Carbon Nanotube/Fullerodendron/SiO2 Coaxial Nanohybrid. Advanced Materials, 23(48), 5750-5754. doi:10.1002/adma.201103472 es_ES
dc.description.references Ueda, Y., Takeda, H., Yui, T., Koike, K., Goto, Y., Inagaki, S., & Ishitani, O. (2014). A Visible-Light Harvesting System for CO2Reduction Using a RuII-ReIPhotocatalyst Adsorbed in Mesoporous Organosilica. ChemSusChem, 8(3), 439-442. doi:10.1002/cssc.201403194 es_ES
dc.description.references Yokoyama, T., Yokoyama, S., Kamikado, T., Okuno, Y., & Mashiko, S. (2001). Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature, 413(6856), 619-621. doi:10.1038/35098059 es_ES
dc.description.references Barth, J. V., Costantini, G., & Kern, K. (2005). Engineering atomic and molecular nanostructures at surfaces. Nature, 437(7059), 671-679. doi:10.1038/nature04166 es_ES
dc.description.references Klasovsky, F., Hohmeyer, J., Brückner, A., Bonifer, M., Arras, J., Steffan, M., … Claus, P. (2008). Catalytic and Mechanistic Investigation of Polyaniline Supported PtO2 Nanoparticles: A Combined in situ/operando EPR, DRIFTS, and EXAFS Study. The Journal of Physical Chemistry C, 112(49), 19555-19559. doi:10.1021/jp805970e es_ES
dc.description.references Nishiyama, F., Yokoyama, T., Kamikado, T., Yokoyama, S., Mashiko, S., Sakaguchi, K., & Kikuchi, K. (2007). Interstitial Accommodation of C60 in a Surface-Supported Supramolecular Network. Advanced Materials, 19(1), 117-120. doi:10.1002/adma.200601364 es_ES
dc.description.references Shalom, M., Inal, S., Fettkenhauer, C., Neher, D., & Antonietti, M. (2013). Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 135(19), 7118-7121. doi:10.1021/ja402521s es_ES
dc.description.references Sun, J., Xu, J., Grafmueller, A., Huang, X., Liedel, C., Algara-Siller, G., … Shalom, M. (2017). Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. Applied Catalysis B: Environmental, 205, 1-10. doi:10.1016/j.apcatb.2016.12.030 es_ES
dc.description.references Ishida, Y., Chabanne, L., Antonietti, M., & Shalom, M. (2014). Morphology Control and Photocatalysis Enhancement by the One-Pot Synthesis of Carbon Nitride from Preorganized Hydrogen-Bonded Supramolecular Precursors. Langmuir, 30(2), 447-451. doi:10.1021/la404101h es_ES
dc.description.references Zhang, J., Hao, J., Wei, Y., Xiao, F., Yin, P., & Wang, L. (2010). Nanoscale Chiral Rod-like Molecular Triads Assembled from Achiral Polyoxometalates. Journal of the American Chemical Society, 132(1), 14-15. doi:10.1021/ja907535g es_ES
dc.description.references Zheng, Y., Zhou, H., Liu, D., Floudas, G., Wagner, M., Koynov, K., … Ikeda, T. (2013). Supramolecular Thiophene Nanosheets. Angewandte Chemie, 125(18), 4945-4948. doi:10.1002/ange.201210090 es_ES
dc.description.references Lee, E., Kim, J.-K., & Lee, M. (2009). Reversible Scrolling of Two-Dimensional Sheets from the Self-Assembly of Laterally Grafted Amphiphilic Rods. Angewandte Chemie International Edition, 48(20), 3657-3660. doi:10.1002/anie.200900079 es_ES
dc.description.references Kambe, T., Sakamoto, R., Hoshiko, K., Takada, K., Miyachi, M., Ryu, J.-H., … Nishihara, H. (2013). π-Conjugated Nickel Bis(dithiolene) Complex Nanosheet. Journal of the American Chemical Society, 135(7), 2462-2465. doi:10.1021/ja312380b es_ES
dc.description.references Dong, R., Pfeffermann, M., Liang, H., Zheng, Z., Zhu, X., Zhang, J., & Feng, X. (2015). Large-Area, Free-Standing, Two-Dimensional Supramolecular Polymer Single-Layer Sheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie International Edition, 54(41), 12058-12063. doi:10.1002/anie.201506048 es_ES
dc.description.references Han, Z., Zhao, Y., Peng, J., Tian, A., Feng, Y., & Liu, Q. (2005). Inorganic–organic hybrid polyoxometalate: Preparation, characterization and electrochemistry properties. Journal of Solid State Chemistry, 178(5), 1386-1394. doi:10.1016/j.jssc.2005.02.006 es_ES
dc.description.references Wang, W., Chen, L.-J., Wang, X.-Q., Sun, B., Li, X., Zhang, Y., … Yang, H.-B. (2015). Organometallic rotaxane dendrimers with fourth-generation mechanically interlocked branches. Proceedings of the National Academy of Sciences, 112(18), 5597-5601. doi:10.1073/pnas.1500489112 es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156h es_ES


This item appears in the following Collection(s)

Show simple item record