- -

Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology

Show full item record

Casado, C.; Fernández-Barquín, A.; Valencia Valencia, S.; Irabien, Á. (2018). Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes. 8(2). https://doi.org/10.3390/membranes8020032

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147690

Files in this item

Item Metadata

Title: Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology
Author: Casado, Clara Fernández-Barquín, Ana Valencia Valencia, Susana Irabien, Ángel
Issued date:
Abstract:
[EN] In the present work, the effect of zeolite type and topology on CO2 and N-2 permeability using zeolites of different topology (CHA, RHO, and LTA) in the same Si/Al = 5, embedded in poly(trimethylsilyl-1-propyne) (PTMSP) ...[+]
Subjects: Mixed matrix membranes , Poly(trimethylsilyl-1-propyne) (PTMSP) , Small-pore zeolites (CHA, RHO, LTA) , Temperature , Modeling
Copyrigths: Reconocimiento (by)
Source:
Membranes. (eissn: 2077-0375 )
DOI: 10.3390/membranes8020032
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/membranes8020032
Project ID:
MINECO/CTQ2016-76231-C2-1-R
Ministerio de Economía y Competitividad y Fondo Europeo de Desarrollo Regional (FEDER)/MAT2015-71842-P (MINECO/FEDER)
Thanks:
This research was funded by Spanish MINECO-General Secretariat for Research, Development and Innovation under project CTQ2016-76231-C2-1-R at the University of Cantabria, and MAT2015-71842-P, at the Instituto de Tecnologia ...[+]
Type: Artículo

References

Bhown, A. S. (2014). Status and Analysis of Next Generation Post-combustion CO2 Capture Technologies. Energy Procedia, 63, 542-549. doi:10.1016/j.egypro.2014.11.059

Dong, G., Li, H., & Chen, V. (2013). Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15), 4610. doi:10.1039/c3ta00927k

Robeson, L. M. (2010). Polymer Blends in Membrane Transport Processes. Industrial & Engineering Chemistry Research, 49(23), 11859-11865. doi:10.1021/ie100153q [+]
Bhown, A. S. (2014). Status and Analysis of Next Generation Post-combustion CO2 Capture Technologies. Energy Procedia, 63, 542-549. doi:10.1016/j.egypro.2014.11.059

Dong, G., Li, H., & Chen, V. (2013). Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry A, 1(15), 4610. doi:10.1039/c3ta00927k

Robeson, L. M. (2010). Polymer Blends in Membrane Transport Processes. Industrial & Engineering Chemistry Research, 49(23), 11859-11865. doi:10.1021/ie100153q

Jusoh, N., Yeong, Y. F., Chew, T. L., Lau, K. K., & Shariff, A. M. (2016). Current Development and Challenges of Mixed Matrix Membranes for CO2/CH4Separation. Separation & Purification Reviews, 45(4), 321-344. doi:10.1080/15422119.2016.1146149

Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M. M., Ismail, A. F., & Matsuura, T. (2014). State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861. doi:10.1016/j.progpolymsci.2014.01.003

Zhang, Y., Sunarso, J., Liu, S., & Wang, R. (2013). Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 12, 84-107. doi:10.1016/j.ijggc.2012.10.009

Rahaman, M. S. A., Cheng, L.-H., Xu, X.-H., Zhang, L., & Chen, H.-L. (2011). A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renewable and Sustainable Energy Reviews, 15(8), 4002-4012. doi:10.1016/j.rser.2011.07.031

Bastani, D., Esmaeili, N., & Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 19(2), 375-393. doi:10.1016/j.jiec.2012.09.019

Powell, C. E., & Qiao, G. G. (2006). Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 279(1-2), 1-49. doi:10.1016/j.memsci.2005.12.062

Zimmerman, C. M., Singh, A., & Koros, W. J. (1997). Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 137(1-2), 145-154. doi:10.1016/s0376-7388(97)00194-4

Gong, H., Lee, S. S., & Bae, T.-H. (2017). Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation. Microporous and Mesoporous Materials, 237, 82-89. doi:10.1016/j.micromeso.2016.09.017

Ebadi Amooghin, A., Omidkhah, M., Sanaeepur, H., & Kargari, A. (2016). Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 25(3), 450-462. doi:10.1016/j.jechem.2016.02.004

Lopes, A. C., Martins, P., & Lanceros-Mendez, S. (2014). Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends. Progress in Surface Science, 89(3-4), 239-277. doi:10.1016/j.progsurf.2014.08.002

Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2015). LTA/Poly(1-trimethylsilyl-1-propyne) Mixed-Matrix Membranes for High-Temperature CO2/N2Separation. Chemical Engineering & Technology, 38(4), 658-666. doi:10.1002/ceat.201400641

Pera-Titus, M. (2013). Porous Inorganic Membranes for CO2 Capture: Present and Prospects. Chemical Reviews, 114(2), 1413-1492. doi:10.1021/cr400237k

Palomino, M., Corma, A., Rey, F., & Valencia, S. (2010). New Insights on CO2−Methane Separation Using LTA Zeolites with Different Si/Al Ratios and a First Comparison with MOFs. Langmuir, 26(3), 1910-1917. doi:10.1021/la9026656

Hedin, N., DeMartin, G. J., Roth, W. J., Strohmaier, K. G., & Reyes, S. C. (2008). PFG NMR self-diffusion of small hydrocarbons in high silica DDR, CHA and LTA structures. Microporous and Mesoporous Materials, 109(1-3), 327-334. doi:10.1016/j.micromeso.2007.05.007

Fernández-Barquín, A., Casado-Coterillo, C., Palomino, M., Valencia, S., & Irabien, A. (2016). Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 157, 102-111. doi:10.1016/j.seppur.2015.11.032

Hashemifard, S. A., Ismail, A. F., & Matsuura, T. (2010). A new theoretical gas permeability model using resistance modeling for mixed matrix membrane systems. Journal of Membrane Science, 350(1-2), 259-268. doi:10.1016/j.memsci.2009.12.036

Shimekit, B., Mukhtar, H., & Murugesan, T. (2011). Prediction of the relative permeability of gases in mixed matrix membranes. Journal of Membrane Science, 373(1-2), 152-159. doi:10.1016/j.memsci.2011.02.038

Ebneyamini, A., Azimi, H., Tezel, F. H., & Thibault, J. (2017). Mixed matrix membranes applications: Development of a resistance-based model. Journal of Membrane Science, 543, 351-360. doi:10.1016/j.memsci.2017.08.065

Pal, R. (2008). Permeation models for mixed matrix membranes. Journal of Colloid and Interface Science, 317(1), 191-198. doi:10.1016/j.jcis.2007.09.032

Hashemifard, S. A., Ismail, A. F., & Matsuura, T. (2010). Prediction of gas permeability in mixed matrix membranes using theoretical models. Journal of Membrane Science, 347(1-2), 53-61. doi:10.1016/j.memsci.2009.10.005

Vinh-Thang, H., & Kaliaguine, S. (2013). Predictive Models for Mixed-Matrix Membrane Performance: A Review. Chemical Reviews, 113(7), 4980-5028. doi:10.1021/cr3003888

Shen, Y., & Lua, A. C. (2013). Theoretical and experimental studies on the gas transport properties of mixed matrix membranes based on polyvinylidene fluoride. AIChE Journal, 59(12), 4715-4726. doi:10.1002/aic.14186

Moore, T. T., Mahajan, R., Vu, D. Q., & Koros, W. J. (2004). Hybrid membrane materials comprising organic polymers with rigid dispersed phases. AIChE Journal, 50(2), 311-321. doi:10.1002/aic.10029

Li, Y., Guan, H.-M., Chung, T.-S., & Kulprathipanja, S. (2006). Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes. Journal of Membrane Science, 275(1-2), 17-28. doi:10.1016/j.memsci.2005.08.015

Gheimasi, K. M., Peydayesh, M., Mohammadi, T., & Bakhtiari, O. (2014). Prediction of CO2/CH4 permeability through Sigma-1–Matrimid®5218 MMMs using the Maxwell model. Journal of Membrane Science, 466, 265-273. doi:10.1016/j.memsci.2014.04.044

Rezaei-DashtArzhandi, M., Ismail, A. F., Ghanbari, M., Bakeri, G., Hashemifard, S. A., Matsuura, T., & Moslehyani, A. (2016). An investigation of temperature effects on the properties and CO 2 absorption performance of porous PVDF/montmorillonite mixed matrix membranes. Journal of Natural Gas Science and Engineering, 31, 515-524. doi:10.1016/j.jngse.2016.02.042

Clarizia, G., Algieri, C., & Drioli, E. (2004). Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer, 45(16), 5671-5681. doi:10.1016/j.polymer.2004.06.001

Hill, A. J., Pas, S. J., Bastow, T. J., Burgar, M. I., Nagai, K., Toy, L. G., & Freeman, B. D. (2004). Influence of methanol conditioning and physical aging on carbon spin-lattice relaxation times of poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science, 243(1-2), 37-44. doi:10.1016/j.memsci.2004.06.007

García, E. J., Pérez-Pellitero, J., Pirngruber, G. D., Jallut, C., Palomino, M., Rey, F., & Valencia, S. (2014). Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2Separation: Best Compromise between the Working Capacity and Selectivity. Industrial & Engineering Chemistry Research, 53(23), 9860-9874. doi:10.1021/ie500207s

Diestel, L., Liu, X. L., Li, Y. S., Yang, W. S., & Caro, J. (2014). Comparative permeation studies on three supported membranes: Pure ZIF-8, pure polymethylphenylsiloxane, and mixed matrix membranes. Microporous and Mesoporous Materials, 189, 210-215. doi:10.1016/j.micromeso.2013.09.012

Mahajan, R., Burns, R., Schaeffer, M., & Koros, W. J. (2002). Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 86(4), 881-890. doi:10.1002/app.10998

Chung, T.-S., Jiang, L. Y., Li, Y., & Kulprathipanja, S. (2007). Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 32(4), 483-507. doi:10.1016/j.progpolymsci.2007.01.008

Safak Boroglu, M., Ugur, M., & Boz, I. (2017). Enhanced gas transport properties of mixed matrix membranes consisting of Matrimid and RHO type ZIF-12 particles. Chemical Engineering Research and Design, 123, 201-213. doi:10.1016/j.cherd.2017.05.010

Wu, T., Diaz, M. C., Zheng, Y., Zhou, R., Funke, H. H., Falconer, J. L., & Noble, R. D. (2015). Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. Journal of Membrane Science, 473, 201-209. doi:10.1016/j.memsci.2014.09.021

Kida, K., Maeta, Y., & Yogo, K. (2018). Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separation and Purification Technology, 197, 116-121. doi:10.1016/j.seppur.2017.12.060

LI, Y., CHUNG, T., CAO, C., & KULPRATHIPANJA, S. (2005). The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 260(1-2), 45-55. doi:10.1016/j.memsci.2005.03.019

Karkhanechi, H., Kazemian, H., Nazockdast, H., Mozdianfard, M. R., & Bidoki, S. M. (2012). Fabrication of Homogenous Polymer-Zeolite Nanocomposites as Mixed-Matrix Membranes for Gas Separation. Chemical Engineering & Technology, 35(5), 885-892. doi:10.1002/ceat.201100236

Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., & Caro, J. (2009). Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 131(44), 16000-16001. doi:10.1021/ja907359t

Li, S., Jiang, X., Yang, Q., & Shao, L. (2017). Effects of amino functionalized polyhedral oligomeric silsesquioxanes on cross-linked poly(ethylene oxide) membranes for highly-efficient CO 2 separation. Chemical Engineering Research and Design, 122, 280-288. doi:10.1016/j.cherd.2017.04.025

[-]

This item appears in the following Collection(s)

Show full item record