Mostrar el registro sencillo del ítem
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Asiri, Abdullah M. | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2020-07-09T03:32:33Z | |
dc.date.available | 2020-07-09T03:32:33Z | |
dc.date.issued | 2018-01-07 | es_ES |
dc.identifier.issn | 1463-9262 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147695 | |
dc.description.abstract | [EN] Metal organic frameworks (MOFs) are being intensively studied as solid catalysts for organic reactions in liquid media. This review focuses on those reports in which these materials have been used as catalysts in the absence of solvents or embedding ionic liquids (ILs). One of the major roles of solvents in liquid phase reactions is to desorb reagents and products from the active sites, facilitating the turnover of the active sites. For this reason, it is a general observation that most solid catalysts undergo strong deactivation and poisoning in the absence of solvents. In the present review, examples are presented showing that, due to their large porosity and framework flexibility, MOFs can be used as catalysts in the absence of solvents for several reaction types including cyanosilylations, condensations, cyloadditions and CO2 insertions, among others, and that they show even better performance than in the presence of conventional organic solvents. This review also describes the synergy that arises from the combination of ILs, frequently with suitable task-specific chains, and MOFs due to the cooperation with the catalysis when two centres in MOF and ionic liquid are present and due to the change in the microenvironment of the active sites. By embedding an ionic liquid in the MOF pores or by synthesising the ionic liquid covalently attached to the ligand in satellite positions, reusable and efficient catalysts requiring the minimum amount of ionic liquid can be obtained. Both complementary strategies increase the greenness of MOFs as heterogeneous catalysts and have advantages from the environmental point of view. Finally, the last section describes the catalytic activity of hierarchical porous MOFs in some selected reactions. | es_ES |
dc.description.sponsorship | AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) is gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Green Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Efficient heterogeneous catalyst | es_ES |
dc.subject | Carbon-Dioxide | es_ES |
dc.subject | Oleic-Acid | es_ES |
dc.subject | Cyclic carbonates | es_ES |
dc.subject | Highly efficient | es_ES |
dc.subject | Knoevenagel condensation | es_ES |
dc.subject | Reusable catalyst | es_ES |
dc.subject | Green chemistry | es_ES |
dc.subject | 1,3-Dipolar cycloadditions | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C7GC02260C | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Dhakshinamoorthy, A.; Asiri, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2018). Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry. 20(1):86-107. https://doi.org/10.1039/C7GC02260C | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/C7GC02260C | es_ES |
dc.description.upvformatpinicio | 86 | es_ES |
dc.description.upvformatpfin | 107 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\382665 | es_ES |
dc.contributor.funder | University Grants Commission, India | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Department of Science and Technology, Ministry of Science and Technology, India | es_ES |
dc.description.references | Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219j | es_ES |
dc.description.references | Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014 | es_ES |
dc.description.references | Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379a | es_ES |
dc.description.references | Sanderson, K. (2011). Chemistry: It’s not easy being green. Nature, 469(7328), 18-20. doi:10.1038/469018a | es_ES |
dc.description.references | Poliakoff, M., & Licence, P. (2007). Green chemistry. Nature, 450(7171), 810-812. doi:10.1038/450810a | es_ES |
dc.description.references | Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8. doi:10.1039/a807961g | es_ES |
dc.description.references | Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c | es_ES |
dc.description.references | Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g | es_ES |
dc.description.references | Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e | es_ES |
dc.description.references | Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j | es_ES |
dc.description.references | Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136z | es_ES |
dc.description.references | Jiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221 | es_ES |
dc.description.references | Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 | es_ES |
dc.description.references | Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141 | es_ES |
dc.description.references | Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k | es_ES |
dc.description.references | Zhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74(1-2), 157-189. doi:10.1016/s0920-5861(01)00541-7 | es_ES |
dc.description.references | Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015 | es_ES |
dc.description.references | Pârvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chemical Reviews, 107(6), 2615-2665. doi:10.1021/cr050948h | es_ES |
dc.description.references | Fujie, K., & Kitagawa, H. (2016). Ionic liquid transported into metal–organic frameworks. Coordination Chemistry Reviews, 307, 382-390. doi:10.1016/j.ccr.2015.09.003 | es_ES |
dc.description.references | Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459c | es_ES |
dc.description.references | Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123k | es_ES |
dc.description.references | Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924k | es_ES |
dc.description.references | Zhang, L.-J., Han, C.-Y., Dang, Q.-Q., Wang, Y.-H., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a modified sodalite-type Cu(ii)-MOF. RSC Advances, 5(31), 24293-24298. doi:10.1039/c4ra16350h | es_ES |
dc.description.references | D’Vries, R. F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Lanthanide Metal–Organic Frameworks: Searching for Efficient Solvent-Free Catalysts. Inorganic Chemistry, 51(21), 11349-11355. doi:10.1021/ic300816r | es_ES |
dc.description.references | Jiang, W., Yang, J., Liu, Y.-Y., Song, S.-Y., & Ma, J.-F. (2017). A Stable Porphyrin-Based Porous mog Metal–Organic Framework as an Efficient Solvent-Free Catalyst for C–C Bond Formation. Inorganic Chemistry, 56(5), 3036-3043. doi:10.1021/acs.inorgchem.6b03174 | es_ES |
dc.description.references | Liu, F., Xu, Y., Zhao, L., Zhang, L., Guo, W., Wang, R., & Sun, D. (2015). Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 3(43), 21545-21552. doi:10.1039/c5ta03680a | es_ES |
dc.description.references | Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139 | es_ES |
dc.description.references | Rostamnia, S., & Morsali, A. (2014). Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Advances, 4(21), 10514. doi:10.1039/c3ra46709k | es_ES |
dc.description.references | Rostamnia, S., & Xin, H. (2014). Basic isoreticular metal-organic framework (IRMOF-3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Applied Organometallic Chemistry, 28(5), 359-363. doi:10.1002/aoc.3136 | es_ES |
dc.description.references | Saikia, M., Bhuyan, D., & Saikia, L. (2015). Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Applied Catalysis A: General, 505, 501-506. doi:10.1016/j.apcata.2015.05.021 | es_ES |
dc.description.references | Beheshti, S., & Morsali, A. (2014). Post-modified anionic nano-porous metal–organic framework as a novel catalyst for solvent-free Michael addition reactions. RSC Advances, 4(70), 37036. doi:10.1039/c4ra05226a | es_ES |
dc.description.references | Nagaraj, A., & Amarajothi, D. (2017). Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. Journal of Colloid and Interface Science, 494, 282-289. doi:10.1016/j.jcis.2017.01.091 | es_ES |
dc.description.references | Beheshti, S., & Morsali, A. (2014). Post-synthetic cation exchange in anionic metal–organic frameworks; a novel strategy for increasing the catalytic activity in solvent-free condensation reactions. RSC Adv., 4(79), 41825-41830. doi:10.1039/c4ra08142k | es_ES |
dc.description.references | Li, P., Regati, S., Huang, H., Arman, H. D., Zhao, J. C.-G., & Chen, B. (2015). A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2(1), 42-46. doi:10.1039/c4qi00148f | es_ES |
dc.description.references | Li, P., Regati, S., Huang, H.-C., Arman, H. D., Chen, B.-L., & Zhao, J. C.-G. (2015). A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 26(1), 6-10. doi:10.1016/j.cclet.2014.10.022 | es_ES |
dc.description.references | Zalomaeva, O. V., Chibiryaev, A. M., Kovalenko, K. A., Kholdeeva, O. A., Balzhinimaev, B. S., & Fedin, V. P. (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179-185. doi:10.1016/j.jcat.2012.11.029 | es_ES |
dc.description.references | Zhou, X., Zhang, Y., Yang, X., Zhao, L., & Wang, G. (2012). Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. Journal of Molecular Catalysis A: Chemical, 361-362, 12-16. doi:10.1016/j.molcata.2012.04.008 | es_ES |
dc.description.references | Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723-33731. doi:10.1021/acsami.6b12458 | es_ES |
dc.description.references | Luo, Q., Song, X., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2014). Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Applied Catalysis A: General, 478, 81-90. doi:10.1016/j.apcata.2014.03.041 | es_ES |
dc.description.references | Luo, Q., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2016). PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Advances, 6(39), 33048-33054. doi:10.1039/c6ra02077a | es_ES |
dc.description.references | Wu, J., Gao, Y., Zhang, W., Tan, Y., Tang, A., Men, Y., & Tang, B. (2014). Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst. Applied Organometallic Chemistry, 29(2), 96-100. doi:10.1002/aoc.3251 | es_ES |
dc.description.references | Abednatanzi, S., Leus, K., Derakhshandeh, P. G., Nahra, F., De Keukeleere, K., Van Hecke, K., … Der Voort, P. V. (2017). POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science & Technology, 7(7), 1478-1487. doi:10.1039/c6cy02662a | es_ES |
dc.description.references | Abednatanzi, S., Abbasi, A., & Masteri-Farahani, M. (2017). Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol. Catalysis Communications, 96, 6-10. doi:10.1016/j.catcom.2017.03.011 | es_ES |
dc.description.references | Wu, Z., Chen, C., Wan, H., Wang, L., Li, Z., Li, B., … Guan, G. (2016). Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energy & Fuels, 30(12), 10739-10746. doi:10.1021/acs.energyfuels.6b01212 | es_ES |
dc.description.references | Wan, H., Chen, C., Wu, Z., Que, Y., Feng, Y., Wang, W., … Liu, X. (2014). Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal-Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem, 7(3), 441-449. doi:10.1002/cctc.201402800 | es_ES |
dc.description.references | Hassan, H. M. A., Betiha, M. A., Mohamed, S. K., El-Sharkawy, E. A., & Ahmed, E. A. (2017). Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst. Journal of Molecular Liquids, 236, 385-394. doi:10.1016/j.molliq.2017.04.034 | es_ES |
dc.description.references | Luo, Q., Ji, M., Lu, M., Hao, C., Qiu, J., & Li, Y. (2013). Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. Journal of Materials Chemistry A, 1(22), 6530. doi:10.1039/c3ta10975e | es_ES |
dc.description.references | Peng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333j | es_ES |
dc.description.references | Paul, A., Ribeiro, A. P. C., Karmakar, A., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2016). A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 45(32), 12779-12789. doi:10.1039/c6dt01852a | es_ES |
dc.description.references | Hu, Y.-H., Wang, J.-C., Yang, S., Li, Y.-A., & Dong, Y.-B. (2017). CuI@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorganic Chemistry, 56(14), 8341-8347. doi:10.1021/acs.inorgchem.7b01025 | es_ES |
dc.description.references | Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., … Feng, S. (2015). Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 3(46), 23136-23142. doi:10.1039/c5ta07026k | es_ES |
dc.description.references | Ding, L.-G., Yao, B.-J., Jiang, W.-L., Li, J.-T., Fu, Q.-J., Li, Y.-A., … Dong, Y.-B. (2017). Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorganic Chemistry, 56(4), 2337-2344. doi:10.1021/acs.inorgchem.6b03169 | es_ES |
dc.description.references | Tharun, J., Bhin, K.-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., … Park, D.-W. (2016). Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 18(8), 2479-2487. doi:10.1039/c5gc02153g | es_ES |
dc.description.references | Park, B. Y., Ryu, K. Y., Park, J. H., & Lee, S. (2009). A dream combination for catalysis: highly reactive and recyclable scandium(iii) triflate-catalyzed cyanosilylations of carbonyl compounds in an ionic liquid. Green Chemistry, 11(7), 946. doi:10.1039/b900254e | es_ES |
dc.description.references | Ogasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536 | es_ES |
dc.description.references | North, M., Usanov, D. L., & Young, C. (2008). Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews, 108(12), 5146-5226. doi:10.1021/cr800255k | es_ES |
dc.description.references | Brunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604 | es_ES |
dc.description.references | Evans, D. A., Truesdale, L. K., & Carroll, G. L. (1973). Cyanosilylation of aldehydes and ketones. A convenient route to cyanohydrin derivatives. Journal of the Chemical Society, Chemical Communications, (2), 55. doi:10.1039/c39730000055 | es_ES |
dc.description.references | Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory: Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906 | es_ES |
dc.description.references | Chechik, V., Conte, M., Dransfield, T., North, M., & Omedes-Pujol, M. (2010). Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 46(19), 3372. doi:10.1039/c001703e | es_ES |
dc.description.references | Belokon’, Y. N., North, M., & Parsons, T. (2000). Vanadium-Catalyzed Asymmetric Cyanohydrin Synthesis. Organic Letters, 2(11), 1617-1619. doi:10.1021/ol005893e | es_ES |
dc.description.references | Xi, W., Liu, Y., Xia, Q., Li, Z., & Cui, Y. (2015). Direct and Post-Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-Organic Frameworks for Asymmetric Organic Transformations. Chemistry - A European Journal, 21(36), 12581-12585. doi:10.1002/chem.201501486 | es_ES |
dc.description.references | Dang, D., Wu, P., He, C., Xie, Z., & Duan, C. (2010). Homochiral Metal−Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 132(41), 14321-14323. doi:10.1021/ja101208s | es_ES |
dc.description.references | Horike, S., Dincǎ, M., Tamaki, K., & Long, J. R. (2008). Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. Journal of the American Chemical Society, 130(18), 5854-5855. doi:10.1021/ja800669j | es_ES |
dc.description.references | D’Vries, R. F., de la Peña-O’Shea, V. A., Snejko, N., Iglesias, M., Gutiérrez-Puebla, E., & Monge, M. A. (2013). H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 135(15), 5782-5792. doi:10.1021/ja4005046 | es_ES |
dc.description.references | Gustafsson, M., Bartoszewicz, A., Martín-Matute, B., Sun, J., Grins, J., Zhao, T., … Zou, X. (2010). A Family of Highly Stable Lanthanide Metal−Organic Frameworks: Structural Evolution and Catalytic Activity. Chemistry of Materials, 22(11), 3316-3322. doi:10.1021/cm100503q | es_ES |
dc.description.references | Gándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841a | es_ES |
dc.description.references | Zhu, Y., Wang, Y.-M., Zhao, S.-Y., Liu, P., Wei, C., Wu, Y.-L., … Xie, J.-M. (2014). Three N–H Functionalized Metal–Organic Frameworks with Selective CO2 Uptake, Dye Capture, and Catalysis. Inorganic Chemistry, 53(14), 7692-7699. doi:10.1021/ic5009895 | es_ES |
dc.description.references | Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040 | es_ES |
dc.description.references | Rajagopal, G., Selvaraj, S., & Dhahagani, K. (2010). Asymmetric cyanosilylation of ketones catalyzed by recyclable polymer-supported copper(II) salen complexes. Tetrahedron: Asymmetry, 21(18), 2265-2270. doi:10.1016/j.tetasy.2010.07.029 | es_ES |
dc.description.references | Pourmousavi, S. A., & Salahshornia, H. (2011). Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3. Bulletin of the Korean Chemical Society, 32(5), 1575-1578. doi:10.5012/bkcs.2011.32.5.1575 | es_ES |
dc.description.references | El Osta, R., Carlin-Sinclair, A., Guillou, N., Walton, R. I., Vermoortele, F., Maes, M., … Millange, F. (2012). Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe). Chemistry of Materials, 24(14), 2781-2791. doi:10.1021/cm301242d | es_ES |
dc.description.references | Maes, M., Vermoortele, F., Alaerts, L., Couck, S., Kirschhock, C. E. A., Denayer, J. F. M., & De Vos, D. E. (2010). Separation of Styrene and Ethylbenzene on Metal−Organic Frameworks: Analogous Structures with Different Adsorption Mechanisms. Journal of the American Chemical Society, 132(43), 15277-15285. doi:10.1021/ja106142x | es_ES |
dc.description.references | Alizadeh, A., & Rostamnia, S. (2010). Adducts of Diketene, Alcohols, and Aldehydes: Useful Building Blocks for 3,4-Dihydropyrimidinones and 1,4-Dihydropyridines. Synthesis, 2010(23), 4057-4060. doi:10.1055/s-0030-1258291 | es_ES |
dc.description.references | Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. Journal of Medicinal Chemistry, 34(2), 806-811. doi:10.1021/jm00106a048 | es_ES |
dc.description.references | Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35(12), 1043-1052. doi:10.1016/s0223-5234(00)01189-2 | es_ES |
dc.description.references | Janis, R. A., & Triggle, D. J. (1983). New developments in calcium ion channel antagonists. Journal of Medicinal Chemistry, 26(6), 775-785. doi:10.1021/jm00360a001 | es_ES |
dc.description.references | Martins, L., Vieira, K. M., Rios, L. M., & Cardoso, D. (2008). Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 133-135, 706-710. doi:10.1016/j.cattod.2007.12.043 | es_ES |
dc.description.references | McGuirk, C. M., Katz, M. J., Stern, C. L., Sarjeant, A. A., Hupp, J. T., Farha, O. K., & Mirkin, C. A. (2015). Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 137(2), 919-925. doi:10.1021/ja511403t | es_ES |
dc.description.references | Zhang, X., Zhang, Z., Boissonnault, J., & Cohen, S. M. (2016). Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Chemical Communications, 52(55), 8585-8588. doi:10.1039/c6cc03190k | es_ES |
dc.description.references | R. Huisgen , in 1,3-Dipolar Cycloaddition Chemistry , ed. A. Padwa , Wiley , New York , 1984 , p. 1 | es_ES |
dc.description.references | Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4 | es_ES |
dc.description.references | Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j | es_ES |
dc.description.references | Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: probing the binding landscapes of biological molecules. Chemical Society Reviews, 39(4), 1252. doi:10.1039/b901969n | es_ES |
dc.description.references | Hua, Y., & Flood, A. H. (2010). Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chemical Society Reviews, 39(4), 1262. doi:10.1039/b818033b | es_ES |
dc.description.references | Hänni, K. D., & Leigh, D. A. (2010). The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev., 39(4), 1240-1251. doi:10.1039/b901974j | es_ES |
dc.description.references | Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chemical Society Reviews, 39(4), 1302. doi:10.1039/b904091a | es_ES |
dc.description.references | Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479 | es_ES |
dc.description.references | Löber, S., Rodriguez-Loaiza, P., & Gmeiner, P. (2003). Click Linker: Efficient and High-Yielding Synthesis of a New Family of SPOS Resins by 1,3-Dipolar Cycloaddition. Organic Letters, 5(10), 1753-1755. doi:10.1021/ol034520l | es_ES |
dc.description.references | Lutz, J.-F. (2007). 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angewandte Chemie International Edition, 46(7), 1018-1025. doi:10.1002/anie.200604050 | es_ES |
dc.description.references | Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015 | es_ES |
dc.description.references | Lo, V. K.-Y., Liu, Y., Wong, M.-K., & Che, C.-M. (2006). Gold(III) Salen Complex-Catalyzed Synthesis of Propargylamines via a Three-Component Coupling Reaction. Organic Letters, 8(8), 1529-1532. doi:10.1021/ol0528641 | es_ES |
dc.description.references | Matsuda, I., Sakakibara, J., & Nagashima, H. (1991). A Novel Approach to α-Silylmethylene-β-lactams via Rh-catalyzed Silylcarbonylation of Propargylamine Derivatives. Tetrahedron Letters, 32(50), 7431-7434. doi:10.1016/0040-4039(91)80126-q | es_ES |
dc.description.references | Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., & Kasuga, K. (2005). Recyclable Catalyst for Conversion of Carbon Dioxide into Formate Attributable to an Oxyanion on the Catalyst Ligand. Journal of the American Chemical Society, 127(38), 13118-13119. doi:10.1021/ja054236k | es_ES |
dc.description.references | Stoian, D. C., Taboada, E., Llorca, J., Molins, E., Medina, F., & Segarra, A. M. (2013). Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications, 49(48), 5489. doi:10.1039/c3cc41298a | es_ES |
dc.description.references | Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10(4), 465. doi:10.1039/b717868a | es_ES |
dc.description.references | Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a | es_ES |
dc.description.references | Lu, X.-B., & Darensbourg, D. J. (2012). Cobalt catalysts for the coupling of CO2and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev., 41(4), 1462-1484. doi:10.1039/c1cs15142h | es_ES |
dc.description.references | North, M., Pasquale, R., & Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 12(9), 1514. doi:10.1039/c0gc00065e | es_ES |
dc.description.references | He, Q., O’Brien, J. W., Kitselman, K. A., Tompkins, L. E., Curtis, G. C. T., & Kerton, F. M. (2014). Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal. Sci. Technol., 4(6), 1513-1528. doi:10.1039/c3cy00998j | es_ES |
dc.description.references | Kim, Y. J., & Varma, R. S. (2005). Tetrahaloindate(III)-Based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides To Generate Cyclic Carbonates: H-Bonding and Mechanistic Studies. The Journal of Organic Chemistry, 70(20), 7882-7891. doi:10.1021/jo050699x | es_ES |
dc.description.references | Caló, V., Nacci, A., Monopoli, A., & Fanizzi, A. (2002). Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Organic Letters, 4(15), 2561-2563. doi:10.1021/ol026189w | es_ES |
dc.description.references | Xie, Y., Wang, T.-T., Yang, R.-X., Huang, N.-Y., Zou, K., & Deng, W.-Q. (2014). Efficient Fixation of CO2by a Zinc-Coordinated Conjugated Microporous Polymer. ChemSusChem, 7(8), 2110-2114. doi:10.1002/cssc.201402162 | es_ES |
dc.description.references | Li, C.-G., Xu, L., Wu, P., Wu, H., & He, M. (2014). Efficient cycloaddition of epoxides and carbon dioxide over novel organic–inorganic hybrid zeolite catalysts. Chem. Commun., 50(99), 15764-15767. doi:10.1039/c4cc07620f | es_ES |
dc.description.references | Zhang, Y., Yin, S., Luo, S., & Au, C. T. (2012). Cycloaddition of CO2 to Epoxides Catalyzed by Carboxyl-Functionalized Imidazolium-Based Ionic Liquid Grafted onto Cross-Linked Polymer. Industrial & Engineering Chemistry Research, 51(10), 3951-3957. doi:10.1021/ie203001u | es_ES |
dc.description.references | Wang, J.-Q., Kong, D.-L., Chen, J.-Y., Cai, F., & He, L.-N. (2006). Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 249(1-2), 143-148. doi:10.1016/j.molcata.2006.01.008 | es_ES |
dc.description.references | Kleist, W., Jutz, F., Maciejewski, M., & Baiker, A. (2009). Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. European Journal of Inorganic Chemistry, 2009(24), 3552-3561. doi:10.1002/ejic.200900509 | es_ES |
dc.description.references | Yano, T., Matsui, H., Koike, T., Ishiguro, H., Fujihara, H., Yoshihara, M., & Maeshima, T. (1997). Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications, (12), 1129-1130. doi:10.1039/a608102i | es_ES |
dc.description.references | Yasuda, H., He, L.-N., & Sakakura, T. (2002). Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. Journal of Catalysis, 209(2), 547-550. doi:10.1006/jcat.2002.3662 | es_ES |
dc.description.references | Xiong, Y., Wang, H., Wang, R., Yan, Y., Zheng, B., & Wang, Y. (2010). A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chemical Communications, 46(19), 3399. doi:10.1039/b926901k | es_ES |
dc.description.references | Dai, W.-L., Chen, L., Yin, S.-F., Li, W.-H., Zhang, Y.-Y., Luo, S.-L., & Au, C.-T. (2010). High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer. Catalysis Letters, 137(1-2), 74-80. doi:10.1007/s10562-010-0346-8 | es_ES |
dc.description.references | Qi, C., Ye, J., Zeng, W., & Jiang, H. (2010). Polystyrene‐Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Advanced Synthesis & Catalysis, 352(11‐12), 1925-1933. doi:10.1002/adsc.201000261 | es_ES |
dc.description.references | Welton, T. (1999). Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 99(8), 2071-2084. doi:10.1021/cr980032t | es_ES |
dc.description.references | Parnham, E. R., & Morris, R. E. (2007). Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 40(10), 1005-1013. doi:10.1021/ar700025k | es_ES |
dc.description.references | Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887 | es_ES |
dc.description.references | Luo, S., Mi, X., Zhang, L., Liu, S., Xu, H., & Cheng, J.-P. (2006). Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angewandte Chemie International Edition, 45(19), 3093-3097. doi:10.1002/anie.200600048 | es_ES |
dc.description.references | Erfurt, K., Wandzik, I., Walczak, K., Matuszek, K., & Chrobok, A. (2014). Hydrogen-bond-rich ionic liquids as effective organocatalysts for Diels–Alder reactions. Green Chem., 16(7), 3508-3514. doi:10.1039/c4gc00380b | es_ES |
dc.description.references | Wu, W., Han, B., Gao, H., Liu, Z., Jiang, T., & Huang, J. (2004). Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angewandte Chemie International Edition, 43(18), 2415-2417. doi:10.1002/anie.200353437 | es_ES |
dc.description.references | Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448 | es_ES |
dc.description.references | Clark, J. H., & Tavener, S. J. (2007). Alternative Solvents: Shades of Green. Organic Process Research & Development, 11(1), 149-155. doi:10.1021/op060160g | es_ES |
dc.description.references | Hangarge, R. V., Jarikote, D. V., & Shingare, M. S. (2002). Knoevenagel condensation reactions in an ionic liquidSee ref. 1. Green Chemistry, 4(3), 266-268. doi:10.1039/b111634g | es_ES |
dc.description.references | Xu, D.-Z., Liu, Y., Shi, S., & Wang, Y. (2010). A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chemistry, 12(3), 514. doi:10.1039/b918595j | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 | es_ES |
dc.description.references | Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 | es_ES |
dc.description.references | Shing, T. K. M., Yeung, & Su, P. L. (2006). Mild Manganese(III) Acetate Catalyzed Allylic Oxidation: Application to Simple and Complex Alkenes. Organic Letters, 8(14), 3149-3151. doi:10.1021/ol0612298 | es_ES |
dc.description.references | Barton, D. H. R., Le Gloahec, V. N., Patin, H., & Launay, F. (1998). Radical chemistry of tert-butyl hydroperoxide (TBHP). Part 1. Studies of the FeIII–TBHP mechanism. New Journal of Chemistry, 22(6), 559-563. doi:10.1039/a709266k | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Yin, P., Chen, L., Wang, Z., Qu, R., Liu, X., Xu, Q., & Ren, S. (2012). Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel, 102, 499-505. doi:10.1016/j.fuel.2012.05.027 | es_ES |
dc.description.references | Oliveira, C. F., Dezaneti, L. M., Garcia, F. A. C., de Macedo, J. L., Dias, J. A., Dias, S. C. L., & Alvim, K. S. P. (2010). Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia☆. Applied Catalysis A: General, 372(2), 153-161. doi:10.1016/j.apcata.2009.10.027 | es_ES |
dc.description.references | Mohammad Fauzi, A. H., Amin, N. A. S., & Mat, R. (2014). Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study. Applied Energy, 114, 809-818. doi:10.1016/j.apenergy.2013.10.011 | es_ES |
dc.description.references | Chen, C., Wu, Z., Que, Y., Li, B., Guo, Q., Li, Z., … Guan, G. (2016). Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge. RSC Advances, 6(59), 54119-54128. doi:10.1039/c6ra03317b | es_ES |
dc.description.references | Mohammad Fauzi, A. H., & Saidina Amin, N. A. (2013). Optimization of oleic acid esterification catalyzed by ionic liquid for green biodiesel synthesis. Energy Conversion and Management, 76, 818-827. doi:10.1016/j.enconman.2013.08.029 | es_ES |
dc.description.references | Lu, D., Zhao, J., Leng, Y., Jiang, P., & Zhang, C. (2016). Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catalysis Communications, 83, 27-30. doi:10.1016/j.catcom.2016.05.004 | es_ES |
dc.description.references | Zhang, L., Cui, Y., Zhang, C., Wang, L., Wan, H., & Guan, G. (2012). Biodiesel Production by Esterification of Oleic Acid over Brønsted Acidic Ionic Liquid Supported onto Fe-Incorporated SBA-15. Industrial & Engineering Chemistry Research, 51(51), 16590-16596. doi:10.1021/ie302419y | es_ES |
dc.description.references | Jiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management, 76, 980-985. doi:10.1016/j.enconman.2013.08.011 | es_ES |
dc.description.references | Wu, Q., Wan, H., Li, H., Song, H., & Chu, T. (2013). Bifunctional temperature-sensitive amphiphilic acidic ionic liquids for preparation of biodiesel. Catalysis Today, 200, 74-79. doi:10.1016/j.cattod.2012.07.007 | es_ES |
dc.description.references | Zhen, B., Li, H., Jiao, Q., Li, Y., Wu, Q., & Zhang, Y. (2012). SiW12O40-Based Ionic Liquid Catalysts: Catalytic Esterification of Oleic Acid for Biodiesel Production. Industrial & Engineering Chemistry Research, 51(31), 10374-10380. doi:10.1021/ie301453c | es_ES |
dc.description.references | Zhang, H., Xu, F., Zhou, X., Zhang, G., & Wang, C. (2007). A Brønsted acidic ionic liquid as an efficient and reusable catalyst system for esterification. Green Chemistry, 9(11), 1208. doi:10.1039/b705480g | es_ES |
dc.description.references | Ferreira, M. C., Meirelles, A. J. A., & Batista, E. A. C. (2013). Study of the Fusel Oil Distillation Process. Industrial & Engineering Chemistry Research, 52(6), 2336-2351. doi:10.1021/ie300665z | es_ES |
dc.description.references | Chinchilla, R., & Nájera, C. (2013). Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 114(3), 1783-1826. doi:10.1021/cr400133p | es_ES |
dc.description.references | Sun, L.-B., Li, J.-R., Park, J., & Zhou, H.-C. (2011). Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 134(1), 126-129. doi:10.1021/ja209698f | es_ES |
dc.description.references | Deng, D., Yang, Y., Gong, Y., Li, Y., Xu, X., & Wang, Y. (2013). Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chemistry, 15(9), 2525. doi:10.1039/c3gc40779a | es_ES |
dc.description.references | Yabe, Y., Yamada, T., Nagata, S., Sawama, Y., Monguchi, Y., & Sajiki, H. (2012). Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis & Catalysis, 354(7), 1264-1268. doi:10.1002/adsc.201100936 | es_ES |
dc.description.references | Long, W., Brunelli, N. A., Didas, S. A., Ping, E. W., & Jones, C. W. (2013). Aminopolymer–Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catalysis, 3(8), 1700-1708. doi:10.1021/cs3007395 | es_ES |
dc.description.references | Sajiki, H., Mori, S., Ohkubo, T., Ikawa, T., Kume, A., Maegawa, T., & Monguchi, Y. (2008). Partial Hydrogenation of Alkynes tocis-Olefins by Using a Novel Pd0–Polyethyleneimine Catalyst. Chemistry - A European Journal, 14(17), 5109-5111. doi:10.1002/chem.200800535 | es_ES |
dc.description.references | Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509 | es_ES |
dc.description.references | Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 | es_ES |
dc.description.references | Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 | es_ES |
dc.description.references | Gadipelli, S., Ford, J., Zhou, W., Wu, H., Udovic, T. J., & Yildirim, T. (2011). Nanoconfinement and Catalytic Dehydrogenation of Ammonia Borane by Magnesium‐Metal–Organic‐Framework‐74. Chemistry – A European Journal, 17(22), 6043-6047. doi:10.1002/chem.201100090 | es_ES |
dc.description.references | Furukawa, H., Müller, U., & Yaghi, O. M. (2015). «Heterogeneity within Order» in Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(11), 3417-3430. doi:10.1002/anie.201410252 | es_ES |
dc.description.references | Yuan, S., Zou, L., Qin, J.-S., Li, J., Huang, L., Feng, L., … Zhou, H.-C. (2017). Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 8(1). doi:10.1038/ncomms15356 | es_ES |
dc.description.references | Kim, D., Kim, D. W., Buyukcakir, O., Kim, M.-K., Polychronopoulou, K., & Coskun, A. (2017). Highly Hydrophobic ZIF-8/Carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2. Advanced Functional Materials, 27(23), 1700706. doi:10.1002/adfm.201700706 | es_ES |
dc.description.references | Miralda, C. M., Macias, E. E., Zhu, M., Ratnasamy, P., & Carreon, M. A. (2011). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2(1), 180-183. doi:10.1021/cs200638h | es_ES |
dc.description.references | Bueken, B., Van Velthoven, N., Willhammar, T., Stassin, T., Stassen, I., Keen, D. A., … Bennett, T. D. (2017). Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 8(5), 3939-3948. doi:10.1039/c6sc05602d | es_ES |
dc.description.references | Dang, Q.-Q., Zhan, Y.-F., Duan, L.-N., & Zhang, X.-M. (2015). A pyridyl-decorated MOF-505 analogue exhibiting hierarchical porosity, selective CO2 capture and catalytic capacity. Dalton Transactions, 44(46), 20027-20031. doi:10.1039/c5dt01943e | es_ES |
dc.description.references | Yang, J., Wang, X., Dai, F., Zhang, L., Wang, R., & Sun, D. (2014). Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel Metal-Organic Framework (MOF) through Metal-Ion Metathesis in a Single-Crystal-to-Single-Crystal Fashion. Inorganic Chemistry, 53(19), 10649-10653. doi:10.1021/ic5017092 | es_ES |
dc.description.references | Wang, R., Wang, Z., Xu, Y., Dai, F., Zhang, L., & Sun, D. (2014). Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 53(14), 7086-7088. doi:10.1021/ic5012764 | es_ES |
dc.description.references | Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151-1152. doi:10.1021/ja00082a055 | es_ES |
dc.description.references | Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., … Pombeiro, A. J. L. (2017). Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 46(26), 8649-8657. doi:10.1039/c7dt01056g | es_ES |
dc.description.references | Chen, Y., Huang, X., Zhang, S., Li, S., Cao, S., Pei, X., … Wang, B. (2016). Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the American Chemical Society, 138(34), 10810-10813. doi:10.1021/jacs.6b06959 | es_ES |
dc.description.references | Zhang, T., Liu, W., Meng, G., Yang, Q., Sun, X., & Liu, J. (2017). Construction of Hierarchical Copper-Based Metal-Organic Framework Nanoarrays as Functional Structured Catalysts. ChemCatChem, 9(10), 1771-1775. doi:10.1002/cctc.201700060 | es_ES |
dc.description.references | Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139 | es_ES |