Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219j
Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014
Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379a
[+]
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219j
Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014
Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379a
Sanderson, K. (2011). Chemistry: It’s not easy being green. Nature, 469(7328), 18-20. doi:10.1038/469018a
Poliakoff, M., & Licence, P. (2007). Green chemistry. Nature, 450(7171), 810-812. doi:10.1038/450810a
Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8. doi:10.1039/a807961g
Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g
Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e
Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j
Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136z
Jiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221
Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091
Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c
Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k
Zhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74(1-2), 157-189. doi:10.1016/s0920-5861(01)00541-7
Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015
Pârvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chemical Reviews, 107(6), 2615-2665. doi:10.1021/cr050948h
Fujie, K., & Kitagawa, H. (2016). Ionic liquid transported into metal–organic frameworks. Coordination Chemistry Reviews, 307, 382-390. doi:10.1016/j.ccr.2015.09.003
Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459c
Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123k
Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924k
Zhang, L.-J., Han, C.-Y., Dang, Q.-Q., Wang, Y.-H., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a modified sodalite-type Cu(ii)-MOF. RSC Advances, 5(31), 24293-24298. doi:10.1039/c4ra16350h
D’Vries, R. F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Lanthanide Metal–Organic Frameworks: Searching for Efficient Solvent-Free Catalysts. Inorganic Chemistry, 51(21), 11349-11355. doi:10.1021/ic300816r
Jiang, W., Yang, J., Liu, Y.-Y., Song, S.-Y., & Ma, J.-F. (2017). A Stable Porphyrin-Based Porous mog Metal–Organic Framework as an Efficient Solvent-Free Catalyst for C–C Bond Formation. Inorganic Chemistry, 56(5), 3036-3043. doi:10.1021/acs.inorgchem.6b03174
Liu, F., Xu, Y., Zhao, L., Zhang, L., Guo, W., Wang, R., & Sun, D. (2015). Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 3(43), 21545-21552. doi:10.1039/c5ta03680a
Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139
Rostamnia, S., & Morsali, A. (2014). Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Advances, 4(21), 10514. doi:10.1039/c3ra46709k
Rostamnia, S., & Xin, H. (2014). Basic isoreticular metal-organic framework (IRMOF-3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Applied Organometallic Chemistry, 28(5), 359-363. doi:10.1002/aoc.3136
Saikia, M., Bhuyan, D., & Saikia, L. (2015). Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Applied Catalysis A: General, 505, 501-506. doi:10.1016/j.apcata.2015.05.021
Beheshti, S., & Morsali, A. (2014). Post-modified anionic nano-porous metal–organic framework as a novel catalyst for solvent-free Michael addition reactions. RSC Advances, 4(70), 37036. doi:10.1039/c4ra05226a
Nagaraj, A., & Amarajothi, D. (2017). Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. Journal of Colloid and Interface Science, 494, 282-289. doi:10.1016/j.jcis.2017.01.091
Beheshti, S., & Morsali, A. (2014). Post-synthetic cation exchange in anionic metal–organic frameworks; a novel strategy for increasing the catalytic activity in solvent-free condensation reactions. RSC Adv., 4(79), 41825-41830. doi:10.1039/c4ra08142k
Li, P., Regati, S., Huang, H., Arman, H. D., Zhao, J. C.-G., & Chen, B. (2015). A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2(1), 42-46. doi:10.1039/c4qi00148f
Li, P., Regati, S., Huang, H.-C., Arman, H. D., Chen, B.-L., & Zhao, J. C.-G. (2015). A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 26(1), 6-10. doi:10.1016/j.cclet.2014.10.022
Zalomaeva, O. V., Chibiryaev, A. M., Kovalenko, K. A., Kholdeeva, O. A., Balzhinimaev, B. S., & Fedin, V. P. (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179-185. doi:10.1016/j.jcat.2012.11.029
Zhou, X., Zhang, Y., Yang, X., Zhao, L., & Wang, G. (2012). Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. Journal of Molecular Catalysis A: Chemical, 361-362, 12-16. doi:10.1016/j.molcata.2012.04.008
Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723-33731. doi:10.1021/acsami.6b12458
Luo, Q., Song, X., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2014). Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Applied Catalysis A: General, 478, 81-90. doi:10.1016/j.apcata.2014.03.041
Luo, Q., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2016). PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Advances, 6(39), 33048-33054. doi:10.1039/c6ra02077a
Wu, J., Gao, Y., Zhang, W., Tan, Y., Tang, A., Men, Y., & Tang, B. (2014). Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst. Applied Organometallic Chemistry, 29(2), 96-100. doi:10.1002/aoc.3251
Abednatanzi, S., Leus, K., Derakhshandeh, P. G., Nahra, F., De Keukeleere, K., Van Hecke, K., … Der Voort, P. V. (2017). POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science & Technology, 7(7), 1478-1487. doi:10.1039/c6cy02662a
Abednatanzi, S., Abbasi, A., & Masteri-Farahani, M. (2017). Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol. Catalysis Communications, 96, 6-10. doi:10.1016/j.catcom.2017.03.011
Wu, Z., Chen, C., Wan, H., Wang, L., Li, Z., Li, B., … Guan, G. (2016). Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energy & Fuels, 30(12), 10739-10746. doi:10.1021/acs.energyfuels.6b01212
Wan, H., Chen, C., Wu, Z., Que, Y., Feng, Y., Wang, W., … Liu, X. (2014). Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal-Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem, 7(3), 441-449. doi:10.1002/cctc.201402800
Hassan, H. M. A., Betiha, M. A., Mohamed, S. K., El-Sharkawy, E. A., & Ahmed, E. A. (2017). Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst. Journal of Molecular Liquids, 236, 385-394. doi:10.1016/j.molliq.2017.04.034
Luo, Q., Ji, M., Lu, M., Hao, C., Qiu, J., & Li, Y. (2013). Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. Journal of Materials Chemistry A, 1(22), 6530. doi:10.1039/c3ta10975e
Peng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333j
Paul, A., Ribeiro, A. P. C., Karmakar, A., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2016). A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 45(32), 12779-12789. doi:10.1039/c6dt01852a
Hu, Y.-H., Wang, J.-C., Yang, S., Li, Y.-A., & Dong, Y.-B. (2017). CuI@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorganic Chemistry, 56(14), 8341-8347. doi:10.1021/acs.inorgchem.7b01025
Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., … Feng, S. (2015). Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 3(46), 23136-23142. doi:10.1039/c5ta07026k
Ding, L.-G., Yao, B.-J., Jiang, W.-L., Li, J.-T., Fu, Q.-J., Li, Y.-A., … Dong, Y.-B. (2017). Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorganic Chemistry, 56(4), 2337-2344. doi:10.1021/acs.inorgchem.6b03169
Tharun, J., Bhin, K.-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., … Park, D.-W. (2016). Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 18(8), 2479-2487. doi:10.1039/c5gc02153g
Park, B. Y., Ryu, K. Y., Park, J. H., & Lee, S. (2009). A dream combination for catalysis: highly reactive and recyclable scandium(iii) triflate-catalyzed cyanosilylations of carbonyl compounds in an ionic liquid. Green Chemistry, 11(7), 946. doi:10.1039/b900254e
Ogasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536
North, M., Usanov, D. L., & Young, C. (2008). Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews, 108(12), 5146-5226. doi:10.1021/cr800255k
Brunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604
Evans, D. A., Truesdale, L. K., & Carroll, G. L. (1973). Cyanosilylation of aldehydes and ketones. A convenient route to cyanohydrin derivatives. Journal of the Chemical Society, Chemical Communications, (2), 55. doi:10.1039/c39730000055
Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory: Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906
Chechik, V., Conte, M., Dransfield, T., North, M., & Omedes-Pujol, M. (2010). Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 46(19), 3372. doi:10.1039/c001703e
Belokon’, Y. N., North, M., & Parsons, T. (2000). Vanadium-Catalyzed Asymmetric Cyanohydrin Synthesis. Organic Letters, 2(11), 1617-1619. doi:10.1021/ol005893e
Xi, W., Liu, Y., Xia, Q., Li, Z., & Cui, Y. (2015). Direct and Post-Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-Organic Frameworks for Asymmetric Organic Transformations. Chemistry - A European Journal, 21(36), 12581-12585. doi:10.1002/chem.201501486
Dang, D., Wu, P., He, C., Xie, Z., & Duan, C. (2010). Homochiral Metal−Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 132(41), 14321-14323. doi:10.1021/ja101208s
Horike, S., Dincǎ, M., Tamaki, K., & Long, J. R. (2008). Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. Journal of the American Chemical Society, 130(18), 5854-5855. doi:10.1021/ja800669j
D’Vries, R. F., de la Peña-O’Shea, V. A., Snejko, N., Iglesias, M., Gutiérrez-Puebla, E., & Monge, M. A. (2013). H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 135(15), 5782-5792. doi:10.1021/ja4005046
Gustafsson, M., Bartoszewicz, A., Martín-Matute, B., Sun, J., Grins, J., Zhao, T., … Zou, X. (2010). A Family of Highly Stable Lanthanide Metal−Organic Frameworks: Structural Evolution and Catalytic Activity. Chemistry of Materials, 22(11), 3316-3322. doi:10.1021/cm100503q
Gándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841a
Zhu, Y., Wang, Y.-M., Zhao, S.-Y., Liu, P., Wei, C., Wu, Y.-L., … Xie, J.-M. (2014). Three N–H Functionalized Metal–Organic Frameworks with Selective CO2 Uptake, Dye Capture, and Catalysis. Inorganic Chemistry, 53(14), 7692-7699. doi:10.1021/ic5009895
Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040
Rajagopal, G., Selvaraj, S., & Dhahagani, K. (2010). Asymmetric cyanosilylation of ketones catalyzed by recyclable polymer-supported copper(II) salen complexes. Tetrahedron: Asymmetry, 21(18), 2265-2270. doi:10.1016/j.tetasy.2010.07.029
Pourmousavi, S. A., & Salahshornia, H. (2011). Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3. Bulletin of the Korean Chemical Society, 32(5), 1575-1578. doi:10.5012/bkcs.2011.32.5.1575
El Osta, R., Carlin-Sinclair, A., Guillou, N., Walton, R. I., Vermoortele, F., Maes, M., … Millange, F. (2012). Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe). Chemistry of Materials, 24(14), 2781-2791. doi:10.1021/cm301242d
Maes, M., Vermoortele, F., Alaerts, L., Couck, S., Kirschhock, C. E. A., Denayer, J. F. M., & De Vos, D. E. (2010). Separation of Styrene and Ethylbenzene on Metal−Organic Frameworks: Analogous Structures with Different Adsorption Mechanisms. Journal of the American Chemical Society, 132(43), 15277-15285. doi:10.1021/ja106142x
Alizadeh, A., & Rostamnia, S. (2010). Adducts of Diketene, Alcohols, and Aldehydes: Useful Building Blocks for 3,4-Dihydropyrimidinones and 1,4-Dihydropyridines. Synthesis, 2010(23), 4057-4060. doi:10.1055/s-0030-1258291
Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. Journal of Medicinal Chemistry, 34(2), 806-811. doi:10.1021/jm00106a048
Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35(12), 1043-1052. doi:10.1016/s0223-5234(00)01189-2
Janis, R. A., & Triggle, D. J. (1983). New developments in calcium ion channel antagonists. Journal of Medicinal Chemistry, 26(6), 775-785. doi:10.1021/jm00360a001
Martins, L., Vieira, K. M., Rios, L. M., & Cardoso, D. (2008). Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 133-135, 706-710. doi:10.1016/j.cattod.2007.12.043
McGuirk, C. M., Katz, M. J., Stern, C. L., Sarjeant, A. A., Hupp, J. T., Farha, O. K., & Mirkin, C. A. (2015). Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 137(2), 919-925. doi:10.1021/ja511403t
Zhang, X., Zhang, Z., Boissonnault, J., & Cohen, S. M. (2016). Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Chemical Communications, 52(55), 8585-8588. doi:10.1039/c6cc03190k
R. Huisgen , in 1,3-Dipolar Cycloaddition Chemistry , ed. A. Padwa , Wiley , New York , 1984 , p. 1
Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j
Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: probing the binding landscapes of biological molecules. Chemical Society Reviews, 39(4), 1252. doi:10.1039/b901969n
Hua, Y., & Flood, A. H. (2010). Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chemical Society Reviews, 39(4), 1262. doi:10.1039/b818033b
Hänni, K. D., & Leigh, D. A. (2010). The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev., 39(4), 1240-1251. doi:10.1039/b901974j
Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chemical Society Reviews, 39(4), 1302. doi:10.1039/b904091a
Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479
Löber, S., Rodriguez-Loaiza, P., & Gmeiner, P. (2003). Click Linker: Efficient and High-Yielding Synthesis of a New Family of SPOS Resins by 1,3-Dipolar Cycloaddition. Organic Letters, 5(10), 1753-1755. doi:10.1021/ol034520l
Lutz, J.-F. (2007). 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angewandte Chemie International Edition, 46(7), 1018-1025. doi:10.1002/anie.200604050
Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015
Lo, V. K.-Y., Liu, Y., Wong, M.-K., & Che, C.-M. (2006). Gold(III) Salen Complex-Catalyzed Synthesis of Propargylamines via a Three-Component Coupling Reaction. Organic Letters, 8(8), 1529-1532. doi:10.1021/ol0528641
Matsuda, I., Sakakibara, J., & Nagashima, H. (1991). A Novel Approach to α-Silylmethylene-β-lactams via Rh-catalyzed Silylcarbonylation of Propargylamine Derivatives. Tetrahedron Letters, 32(50), 7431-7434. doi:10.1016/0040-4039(91)80126-q
Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., & Kasuga, K. (2005). Recyclable Catalyst for Conversion of Carbon Dioxide into Formate Attributable to an Oxyanion on the Catalyst Ligand. Journal of the American Chemical Society, 127(38), 13118-13119. doi:10.1021/ja054236k
Stoian, D. C., Taboada, E., Llorca, J., Molins, E., Medina, F., & Segarra, A. M. (2013). Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications, 49(48), 5489. doi:10.1039/c3cc41298a
Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10(4), 465. doi:10.1039/b717868a
Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a
Lu, X.-B., & Darensbourg, D. J. (2012). Cobalt catalysts for the coupling of CO2and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev., 41(4), 1462-1484. doi:10.1039/c1cs15142h
North, M., Pasquale, R., & Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 12(9), 1514. doi:10.1039/c0gc00065e
He, Q., O’Brien, J. W., Kitselman, K. A., Tompkins, L. E., Curtis, G. C. T., & Kerton, F. M. (2014). Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal. Sci. Technol., 4(6), 1513-1528. doi:10.1039/c3cy00998j
Kim, Y. J., & Varma, R. S. (2005). Tetrahaloindate(III)-Based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides To Generate Cyclic Carbonates: H-Bonding and Mechanistic Studies. The Journal of Organic Chemistry, 70(20), 7882-7891. doi:10.1021/jo050699x
Caló, V., Nacci, A., Monopoli, A., & Fanizzi, A. (2002). Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Organic Letters, 4(15), 2561-2563. doi:10.1021/ol026189w
Xie, Y., Wang, T.-T., Yang, R.-X., Huang, N.-Y., Zou, K., & Deng, W.-Q. (2014). Efficient Fixation of CO2by a Zinc-Coordinated Conjugated Microporous Polymer. ChemSusChem, 7(8), 2110-2114. doi:10.1002/cssc.201402162
Li, C.-G., Xu, L., Wu, P., Wu, H., & He, M. (2014). Efficient cycloaddition of epoxides and carbon dioxide over novel organic–inorganic hybrid zeolite catalysts. Chem. Commun., 50(99), 15764-15767. doi:10.1039/c4cc07620f
Zhang, Y., Yin, S., Luo, S., & Au, C. T. (2012). Cycloaddition of CO2 to Epoxides Catalyzed by Carboxyl-Functionalized Imidazolium-Based Ionic Liquid Grafted onto Cross-Linked Polymer. Industrial & Engineering Chemistry Research, 51(10), 3951-3957. doi:10.1021/ie203001u
Wang, J.-Q., Kong, D.-L., Chen, J.-Y., Cai, F., & He, L.-N. (2006). Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 249(1-2), 143-148. doi:10.1016/j.molcata.2006.01.008
Kleist, W., Jutz, F., Maciejewski, M., & Baiker, A. (2009). Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. European Journal of Inorganic Chemistry, 2009(24), 3552-3561. doi:10.1002/ejic.200900509
Yano, T., Matsui, H., Koike, T., Ishiguro, H., Fujihara, H., Yoshihara, M., & Maeshima, T. (1997). Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications, (12), 1129-1130. doi:10.1039/a608102i
Yasuda, H., He, L.-N., & Sakakura, T. (2002). Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. Journal of Catalysis, 209(2), 547-550. doi:10.1006/jcat.2002.3662
Xiong, Y., Wang, H., Wang, R., Yan, Y., Zheng, B., & Wang, Y. (2010). A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chemical Communications, 46(19), 3399. doi:10.1039/b926901k
Dai, W.-L., Chen, L., Yin, S.-F., Li, W.-H., Zhang, Y.-Y., Luo, S.-L., & Au, C.-T. (2010). High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer. Catalysis Letters, 137(1-2), 74-80. doi:10.1007/s10562-010-0346-8
Qi, C., Ye, J., Zeng, W., & Jiang, H. (2010). Polystyrene‐Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Advanced Synthesis & Catalysis, 352(11‐12), 1925-1933. doi:10.1002/adsc.201000261
Welton, T. (1999). Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 99(8), 2071-2084. doi:10.1021/cr980032t
Parnham, E. R., & Morris, R. E. (2007). Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 40(10), 1005-1013. doi:10.1021/ar700025k
Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887
Luo, S., Mi, X., Zhang, L., Liu, S., Xu, H., & Cheng, J.-P. (2006). Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angewandte Chemie International Edition, 45(19), 3093-3097. doi:10.1002/anie.200600048
Erfurt, K., Wandzik, I., Walczak, K., Matuszek, K., & Chrobok, A. (2014). Hydrogen-bond-rich ionic liquids as effective organocatalysts for Diels–Alder reactions. Green Chem., 16(7), 3508-3514. doi:10.1039/c4gc00380b
Wu, W., Han, B., Gao, H., Liu, Z., Jiang, T., & Huang, J. (2004). Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angewandte Chemie International Edition, 43(18), 2415-2417. doi:10.1002/anie.200353437
Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448
Clark, J. H., & Tavener, S. J. (2007). Alternative Solvents: Shades of Green. Organic Process Research & Development, 11(1), 149-155. doi:10.1021/op060160g
Hangarge, R. V., Jarikote, D. V., & Shingare, M. S. (2002). Knoevenagel condensation reactions in an ionic liquidSee ref. 1. Green Chemistry, 4(3), 266-268. doi:10.1039/b111634g
Xu, D.-Z., Liu, Y., Shi, S., & Wang, Y. (2010). A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chemistry, 12(3), 514. doi:10.1039/b918595j
Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018
Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027
Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766
Shing, T. K. M., Yeung, & Su, P. L. (2006). Mild Manganese(III) Acetate Catalyzed Allylic Oxidation: Application to Simple and Complex Alkenes. Organic Letters, 8(14), 3149-3151. doi:10.1021/ol0612298
Barton, D. H. R., Le Gloahec, V. N., Patin, H., & Launay, F. (1998). Radical chemistry of tert-butyl hydroperoxide (TBHP). Part 1. Studies of the FeIII–TBHP mechanism. New Journal of Chemistry, 22(6), 559-563. doi:10.1039/a709266k
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f
Yin, P., Chen, L., Wang, Z., Qu, R., Liu, X., Xu, Q., & Ren, S. (2012). Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel, 102, 499-505. doi:10.1016/j.fuel.2012.05.027
Oliveira, C. F., Dezaneti, L. M., Garcia, F. A. C., de Macedo, J. L., Dias, J. A., Dias, S. C. L., & Alvim, K. S. P. (2010). Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia☆. Applied Catalysis A: General, 372(2), 153-161. doi:10.1016/j.apcata.2009.10.027
Mohammad Fauzi, A. H., Amin, N. A. S., & Mat, R. (2014). Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study. Applied Energy, 114, 809-818. doi:10.1016/j.apenergy.2013.10.011
Chen, C., Wu, Z., Que, Y., Li, B., Guo, Q., Li, Z., … Guan, G. (2016). Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge. RSC Advances, 6(59), 54119-54128. doi:10.1039/c6ra03317b
Mohammad Fauzi, A. H., & Saidina Amin, N. A. (2013). Optimization of oleic acid esterification catalyzed by ionic liquid for green biodiesel synthesis. Energy Conversion and Management, 76, 818-827. doi:10.1016/j.enconman.2013.08.029
Lu, D., Zhao, J., Leng, Y., Jiang, P., & Zhang, C. (2016). Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catalysis Communications, 83, 27-30. doi:10.1016/j.catcom.2016.05.004
Zhang, L., Cui, Y., Zhang, C., Wang, L., Wan, H., & Guan, G. (2012). Biodiesel Production by Esterification of Oleic Acid over Brønsted Acidic Ionic Liquid Supported onto Fe-Incorporated SBA-15. Industrial & Engineering Chemistry Research, 51(51), 16590-16596. doi:10.1021/ie302419y
Jiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management, 76, 980-985. doi:10.1016/j.enconman.2013.08.011
Wu, Q., Wan, H., Li, H., Song, H., & Chu, T. (2013). Bifunctional temperature-sensitive amphiphilic acidic ionic liquids for preparation of biodiesel. Catalysis Today, 200, 74-79. doi:10.1016/j.cattod.2012.07.007
Zhen, B., Li, H., Jiao, Q., Li, Y., Wu, Q., & Zhang, Y. (2012). SiW12O40-Based Ionic Liquid Catalysts: Catalytic Esterification of Oleic Acid for Biodiesel Production. Industrial & Engineering Chemistry Research, 51(31), 10374-10380. doi:10.1021/ie301453c
Zhang, H., Xu, F., Zhou, X., Zhang, G., & Wang, C. (2007). A Brønsted acidic ionic liquid as an efficient and reusable catalyst system for esterification. Green Chemistry, 9(11), 1208. doi:10.1039/b705480g
Ferreira, M. C., Meirelles, A. J. A., & Batista, E. A. C. (2013). Study of the Fusel Oil Distillation Process. Industrial & Engineering Chemistry Research, 52(6), 2336-2351. doi:10.1021/ie300665z
Chinchilla, R., & Nájera, C. (2013). Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 114(3), 1783-1826. doi:10.1021/cr400133p
Sun, L.-B., Li, J.-R., Park, J., & Zhou, H.-C. (2011). Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 134(1), 126-129. doi:10.1021/ja209698f
Deng, D., Yang, Y., Gong, Y., Li, Y., Xu, X., & Wang, Y. (2013). Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chemistry, 15(9), 2525. doi:10.1039/c3gc40779a
Yabe, Y., Yamada, T., Nagata, S., Sawama, Y., Monguchi, Y., & Sajiki, H. (2012). Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis & Catalysis, 354(7), 1264-1268. doi:10.1002/adsc.201100936
Long, W., Brunelli, N. A., Didas, S. A., Ping, E. W., & Jones, C. W. (2013). Aminopolymer–Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catalysis, 3(8), 1700-1708. doi:10.1021/cs3007395
Sajiki, H., Mori, S., Ohkubo, T., Ikawa, T., Kume, A., Maegawa, T., & Monguchi, Y. (2008). Partial Hydrogenation of Alkynes tocis-Olefins by Using a Novel Pd0–Polyethyleneimine Catalyst. Chemistry - A European Journal, 14(17), 5109-5111. doi:10.1002/chem.200800535
Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509
Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208
Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220
Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998
Gadipelli, S., Ford, J., Zhou, W., Wu, H., Udovic, T. J., & Yildirim, T. (2011). Nanoconfinement and Catalytic Dehydrogenation of Ammonia Borane by Magnesium‐Metal–Organic‐Framework‐74. Chemistry – A European Journal, 17(22), 6043-6047. doi:10.1002/chem.201100090
Furukawa, H., Müller, U., & Yaghi, O. M. (2015). «Heterogeneity within Order» in Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(11), 3417-3430. doi:10.1002/anie.201410252
Yuan, S., Zou, L., Qin, J.-S., Li, J., Huang, L., Feng, L., … Zhou, H.-C. (2017). Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 8(1). doi:10.1038/ncomms15356
Kim, D., Kim, D. W., Buyukcakir, O., Kim, M.-K., Polychronopoulou, K., & Coskun, A. (2017). Highly Hydrophobic ZIF-8/Carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2. Advanced Functional Materials, 27(23), 1700706. doi:10.1002/adfm.201700706
Miralda, C. M., Macias, E. E., Zhu, M., Ratnasamy, P., & Carreon, M. A. (2011). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2(1), 180-183. doi:10.1021/cs200638h
Bueken, B., Van Velthoven, N., Willhammar, T., Stassin, T., Stassen, I., Keen, D. A., … Bennett, T. D. (2017). Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 8(5), 3939-3948. doi:10.1039/c6sc05602d
Dang, Q.-Q., Zhan, Y.-F., Duan, L.-N., & Zhang, X.-M. (2015). A pyridyl-decorated MOF-505 analogue exhibiting hierarchical porosity, selective CO2 capture and catalytic capacity. Dalton Transactions, 44(46), 20027-20031. doi:10.1039/c5dt01943e
Yang, J., Wang, X., Dai, F., Zhang, L., Wang, R., & Sun, D. (2014). Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel Metal-Organic Framework (MOF) through Metal-Ion Metathesis in a Single-Crystal-to-Single-Crystal Fashion. Inorganic Chemistry, 53(19), 10649-10653. doi:10.1021/ic5017092
Wang, R., Wang, Z., Xu, Y., Dai, F., Zhang, L., & Sun, D. (2014). Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 53(14), 7086-7088. doi:10.1021/ic5012764
Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151-1152. doi:10.1021/ja00082a055
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., … Pombeiro, A. J. L. (2017). Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 46(26), 8649-8657. doi:10.1039/c7dt01056g
Chen, Y., Huang, X., Zhang, S., Li, S., Cao, S., Pei, X., … Wang, B. (2016). Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the American Chemical Society, 138(34), 10810-10813. doi:10.1021/jacs.6b06959
Zhang, T., Liu, W., Meng, G., Yang, Q., Sun, X., & Liu, J. (2017). Construction of Hierarchical Copper-Based Metal-Organic Framework Nanoarrays as Functional Structured Catalysts. ChemCatChem, 9(10), 1771-1775. doi:10.1002/cctc.201700060
Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139
[-]