- -

Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Asiri, AM.; Alvaro Rodríguez, MM.; García Gómez, H. (2018). Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry. 20(1):86-107. https://doi.org/10.1039/C7GC02260C

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147695

Ficheros en el ítem

Metadatos del ítem

Título: Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions
Autor: Dhakshinamoorthy, Amarajothi Asiri, Abdullah M. Alvaro Rodríguez, Maria Mercedes García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Metal organic frameworks (MOFs) are being intensively studied as solid catalysts for organic reactions in liquid media. This review focuses on those reports in which these materials have been used as catalysts in the ...[+]
Palabras clave: Efficient heterogeneous catalyst , Carbon-Dioxide , Oleic-Acid , Cyclic carbonates , Highly efficient , Knoevenagel condensation , Reusable catalyst , Green chemistry , 1,3-Dipolar cycloadditions
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/C7GC02260C
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C7GC02260C
Código del Proyecto:
info:eu-repo/grantAgreement/DST//EMR%2F2016%2F006500/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for financial ...[+]
Tipo: Artículo

References

Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219j

Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014

Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379a [+]
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chem. Soc. Rev., 41(4), 1437-1451. doi:10.1039/c1cs15219j

Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183-207. doi:10.1146/annurev-chembioeng-062011-081014

Cernansky, R. (2015). Chemistry: Green refill. Nature, 519(7543), 379-380. doi:10.1038/nj7543-379a

Sanderson, K. (2011). Chemistry: It’s not easy being green. Nature, 469(7328), 18-20. doi:10.1038/469018a

Poliakoff, M., & Licence, P. (2007). Green chemistry. Nature, 450(7171), 810-812. doi:10.1038/450810a

Clark, J. H. (1999). Green chemistry: challenges and opportunities. Green Chemistry, 1(1), 1-8. doi:10.1039/a807961g

Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094c

Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2015). Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 44(7), 1922-1947. doi:10.1039/c4cs00254g

Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e

Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003j

Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136z

Jiang, J., & Yaghi, O. M. (2015). Brønsted Acidity in Metal–Organic Frameworks. Chemical Reviews, 115(14), 6966-6997. doi:10.1021/acs.chemrev.5b00221

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

Dhakshinamoorthy, A., & Garcia, H. (2012). Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 41(15), 5262. doi:10.1039/c2cs35047e

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141

Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395k

Zhao, D., Wu, M., Kou, Y., & Min, E. (2002). Ionic liquids: applications in catalysis. Catalysis Today, 74(1-2), 157-189. doi:10.1016/s0920-5861(01)00541-7

Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015

Pârvulescu, V. I., & Hardacre, C. (2007). Catalysis in Ionic Liquids. Chemical Reviews, 107(6), 2615-2665. doi:10.1021/cr050948h

Fujie, K., & Kitagawa, H. (2016). Ionic liquid transported into metal–organic frameworks. Coordination Chemistry Reviews, 307, 382-390. doi:10.1016/j.ccr.2015.09.003

Bhunia, A., Dey, S., Moreno, J. M., Diaz, U., Concepcion, P., Van Hecke, K., … Van Der Voort, P. (2016). A homochiral vanadium–salen based cadmium bpdc MOF with permanent porosity as an asymmetric catalyst in solvent-free cyanosilylation. Chemical Communications, 52(7), 1401-1404. doi:10.1039/c5cc09459c

Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123k

Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924k

Zhang, L.-J., Han, C.-Y., Dang, Q.-Q., Wang, Y.-H., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a modified sodalite-type Cu(ii)-MOF. RSC Advances, 5(31), 24293-24298. doi:10.1039/c4ra16350h

D’Vries, R. F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. A. (2012). Lanthanide Metal–Organic Frameworks: Searching for Efficient Solvent-Free Catalysts. Inorganic Chemistry, 51(21), 11349-11355. doi:10.1021/ic300816r

Jiang, W., Yang, J., Liu, Y.-Y., Song, S.-Y., & Ma, J.-F. (2017). A Stable Porphyrin-Based Porous mog Metal–Organic Framework as an Efficient Solvent-Free Catalyst for C–C Bond Formation. Inorganic Chemistry, 56(5), 3036-3043. doi:10.1021/acs.inorgchem.6b03174

Liu, F., Xu, Y., Zhao, L., Zhang, L., Guo, W., Wang, R., & Sun, D. (2015). Porous barium–organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability. Journal of Materials Chemistry A, 3(43), 21545-21552. doi:10.1039/c5ta03680a

Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139

Rostamnia, S., & Morsali, A. (2014). Basic isoreticular nanoporous metal–organic framework for Biginelli and Hantzsch coupling: IRMOF-3 as a green and recoverable heterogeneous catalyst in solvent-free conditions. RSC Advances, 4(21), 10514. doi:10.1039/c3ra46709k

Rostamnia, S., & Xin, H. (2014). Basic isoreticular metal-organic framework (IRMOF-3) porous nanomaterial as a suitable and green catalyst for selective unsymmetrical Hantzsch coupling reaction. Applied Organometallic Chemistry, 28(5), 359-363. doi:10.1002/aoc.3136

Saikia, M., Bhuyan, D., & Saikia, L. (2015). Keggin type phosphotungstic acid encapsulated chromium (III) terephthalate metal organic framework as active catalyst for Biginelli condensation. Applied Catalysis A: General, 505, 501-506. doi:10.1016/j.apcata.2015.05.021

Beheshti, S., & Morsali, A. (2014). Post-modified anionic nano-porous metal–organic framework as a novel catalyst for solvent-free Michael addition reactions. RSC Advances, 4(70), 37036. doi:10.1039/c4ra05226a

Nagaraj, A., & Amarajothi, D. (2017). Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. Journal of Colloid and Interface Science, 494, 282-289. doi:10.1016/j.jcis.2017.01.091

Beheshti, S., & Morsali, A. (2014). Post-synthetic cation exchange in anionic metal–organic frameworks; a novel strategy for increasing the catalytic activity in solvent-free condensation reactions. RSC Adv., 4(79), 41825-41830. doi:10.1039/c4ra08142k

Li, P., Regati, S., Huang, H., Arman, H. D., Zhao, J. C.-G., & Chen, B. (2015). A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2(1), 42-46. doi:10.1039/c4qi00148f

Li, P., Regati, S., Huang, H.-C., Arman, H. D., Chen, B.-L., & Zhao, J. C.-G. (2015). A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chinese Chemical Letters, 26(1), 6-10. doi:10.1016/j.cclet.2014.10.022

Zalomaeva, O. V., Chibiryaev, A. M., Kovalenko, K. A., Kholdeeva, O. A., Balzhinimaev, B. S., & Fedin, V. P. (2013). Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. Journal of Catalysis, 298, 179-185. doi:10.1016/j.jcat.2012.11.029

Zhou, X., Zhang, Y., Yang, X., Zhao, L., & Wang, G. (2012). Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. Journal of Molecular Catalysis A: Chemical, 361-362, 12-16. doi:10.1016/j.molcata.2012.04.008

Babu, R., Roshan, R., Kathalikkattil, A. C., Kim, D. W., & Park, D.-W. (2016). Rapid, Microwave-Assisted Synthesis of Cubic, Three-Dimensional, Highly Porous MOF-205 for Room Temperature CO2 Fixation via Cyclic Carbonate Synthesis. ACS Applied Materials & Interfaces, 8(49), 33723-33731. doi:10.1021/acsami.6b12458

Luo, Q., Song, X., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2014). Molecular size- and shape-selective Knoevenagel condensation over microporous Cu3(BTC)2 immobilized amino-functionalized basic ionic liquid catalyst. Applied Catalysis A: General, 478, 81-90. doi:10.1016/j.apcata.2014.03.041

Luo, Q., Ji, M., Park, S.-E., Hao, C., & Li, Y. (2016). PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene. RSC Advances, 6(39), 33048-33054. doi:10.1039/c6ra02077a

Wu, J., Gao, Y., Zhang, W., Tan, Y., Tang, A., Men, Y., & Tang, B. (2014). Deep desulfurization by oxidation using an active ionic liquid-supported Zr metal-organic framework as catalyst. Applied Organometallic Chemistry, 29(2), 96-100. doi:10.1002/aoc.3251

Abednatanzi, S., Leus, K., Derakhshandeh, P. G., Nahra, F., De Keukeleere, K., Van Hecke, K., … Der Voort, P. V. (2017). POM@IL-MOFs – inclusion of POMs in ionic liquid modified MOFs to produce recyclable oxidation catalysts. Catalysis Science & Technology, 7(7), 1478-1487. doi:10.1039/c6cy02662a

Abednatanzi, S., Abbasi, A., & Masteri-Farahani, M. (2017). Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol. Catalysis Communications, 96, 6-10. doi:10.1016/j.catcom.2017.03.011

Wu, Z., Chen, C., Wan, H., Wang, L., Li, Z., Li, B., … Guan, G. (2016). Fabrication of Magnetic NH2-MIL-88B (Fe) Confined Brønsted Ionic Liquid as an Efficient Catalyst in Biodiesel Synthesis. Energy & Fuels, 30(12), 10739-10746. doi:10.1021/acs.energyfuels.6b01212

Wan, H., Chen, C., Wu, Z., Que, Y., Feng, Y., Wang, W., … Liu, X. (2014). Encapsulation of Heteropolyanion-Based Ionic Liquid within the Metal-Organic Framework MIL-100(Fe) for Biodiesel Production. ChemCatChem, 7(3), 441-449. doi:10.1002/cctc.201402800

Hassan, H. M. A., Betiha, M. A., Mohamed, S. K., El-Sharkawy, E. A., & Ahmed, E. A. (2017). Stable and recyclable MIL-101(Cr)–Ionic liquid based hybrid nanomaterials as heterogeneous catalyst. Journal of Molecular Liquids, 236, 385-394. doi:10.1016/j.molliq.2017.04.034

Luo, Q., Ji, M., Lu, M., Hao, C., Qiu, J., & Li, Y. (2013). Organic electron-rich N-heterocyclic compound as a chemical bridge: building a Brönsted acidic ionic liquid confined in MIL-101 nanocages. Journal of Materials Chemistry A, 1(22), 6530. doi:10.1039/c3ta10975e

Peng, L., Zhang, J., Yang, S., Han, B., Sang, X., Liu, C., & Yang, G. (2015). The ionic liquid microphase enhances the catalytic activity of Pd nanoparticles supported by a metal–organic framework. Green Chem., 17(8), 4178-4182. doi:10.1039/c5gc01333j

Paul, A., Ribeiro, A. P. C., Karmakar, A., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2016). A Cu(ii) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 45(32), 12779-12789. doi:10.1039/c6dt01852a

Hu, Y.-H., Wang, J.-C., Yang, S., Li, Y.-A., & Dong, Y.-B. (2017). CuI@UiO-67-IM: A MOF-Based Bifunctional Composite Triphase-Transfer Catalyst for Sequential One-Pot Azide–Alkyne Cycloaddition in Water. Inorganic Chemistry, 56(14), 8341-8347. doi:10.1021/acs.inorgchem.7b01025

Ma, D., Li, B., Liu, K., Zhang, X., Zou, W., Yang, Y., … Feng, S. (2015). Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 3(46), 23136-23142. doi:10.1039/c5ta07026k

Ding, L.-G., Yao, B.-J., Jiang, W.-L., Li, J.-T., Fu, Q.-J., Li, Y.-A., … Dong, Y.-B. (2017). Bifunctional Imidazolium-Based Ionic Liquid Decorated UiO-67 Type MOF for Selective CO2 Adsorption and Catalytic Property for CO2 Cycloaddition with Epoxides. Inorganic Chemistry, 56(4), 2337-2344. doi:10.1021/acs.inorgchem.6b03169

Tharun, J., Bhin, K.-M., Roshan, R., Kim, D. W., Kathalikkattil, A. C., Babu, R., … Park, D.-W. (2016). Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 18(8), 2479-2487. doi:10.1039/c5gc02153g

Park, B. Y., Ryu, K. Y., Park, J. H., & Lee, S. (2009). A dream combination for catalysis: highly reactive and recyclable scandium(iii) triflate-catalyzed cyanosilylations of carbonyl compounds in an ionic liquid. Green Chemistry, 11(7), 946. doi:10.1039/b900254e

Ogasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536

North, M., Usanov, D. L., & Young, C. (2008). Lewis Acid Catalyzed Asymmetric Cyanohydrin Synthesis. Chemical Reviews, 108(12), 5146-5226. doi:10.1021/cr800255k

Brunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604

Evans, D. A., Truesdale, L. K., & Carroll, G. L. (1973). Cyanosilylation of aldehydes and ketones. A convenient route to cyanohydrin derivatives. Journal of the Chemical Society, Chemical Communications, (2), 55. doi:10.1039/c39730000055

Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory:  Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906

Chechik, V., Conte, M., Dransfield, T., North, M., & Omedes-Pujol, M. (2010). Cyanogen formation during asymmetric cyanohydrin synthesis. Chemical Communications, 46(19), 3372. doi:10.1039/c001703e

Belokon’, Y. N., North, M., & Parsons, T. (2000). Vanadium-Catalyzed Asymmetric Cyanohydrin Synthesis. Organic Letters, 2(11), 1617-1619. doi:10.1021/ol005893e

Xi, W., Liu, Y., Xia, Q., Li, Z., & Cui, Y. (2015). Direct and Post-Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-Organic Frameworks for Asymmetric Organic Transformations. Chemistry - A European Journal, 21(36), 12581-12585. doi:10.1002/chem.201501486

Dang, D., Wu, P., He, C., Xie, Z., & Duan, C. (2010). Homochiral Metal−Organic Frameworks for Heterogeneous Asymmetric Catalysis. Journal of the American Chemical Society, 132(41), 14321-14323. doi:10.1021/ja101208s

Horike, S., Dincǎ, M., Tamaki, K., & Long, J. R. (2008). Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+Coordination Sites. Journal of the American Chemical Society, 130(18), 5854-5855. doi:10.1021/ja800669j

D’Vries, R. F., de la Peña-O’Shea, V. A., Snejko, N., Iglesias, M., Gutiérrez-Puebla, E., & Monge, M. A. (2013). H3O2 Bridging Ligand in a Metal–Organic Framework. Insight into the Aqua-Hydroxo↔Hydroxyl Equilibrium: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 135(15), 5782-5792. doi:10.1021/ja4005046

Gustafsson, M., Bartoszewicz, A., Martín-Matute, B., Sun, J., Grins, J., Zhao, T., … Zou, X. (2010). A Family of Highly Stable Lanthanide Metal−Organic Frameworks: Structural Evolution and Catalytic Activity. Chemistry of Materials, 22(11), 3316-3322. doi:10.1021/cm100503q

Gándara, F., Gómez-Lor, B., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, A. (2009). A new scandium metal organic framework built up from octadecasil zeolitic cages as heterogeneous catalyst. Chemical Communications, (17), 2393. doi:10.1039/b900841a

Zhu, Y., Wang, Y.-M., Zhao, S.-Y., Liu, P., Wei, C., Wu, Y.-L., … Xie, J.-M. (2014). Three N–H Functionalized Metal–Organic Frameworks with Selective CO2 Uptake, Dye Capture, and Catalysis. Inorganic Chemistry, 53(14), 7692-7699. doi:10.1021/ic5009895

Yao, H.-F., Yang, Y., Liu, H., Xi, F.-G., & Gao, E.-Q. (2014). CPO-27-M as heterogeneous catalysts for aldehyde cyanosilylation and styrene oxidation. Journal of Molecular Catalysis A: Chemical, 394, 57-65. doi:10.1016/j.molcata.2014.06.040

Rajagopal, G., Selvaraj, S., & Dhahagani, K. (2010). Asymmetric cyanosilylation of ketones catalyzed by recyclable polymer-supported copper(II) salen complexes. Tetrahedron: Asymmetry, 21(18), 2265-2270. doi:10.1016/j.tetasy.2010.07.029

Pourmousavi, S. A., & Salahshornia, H. (2011). Efficient, Rapid and Solvent-free Cyanosilylation of Aldehydes and Ketones Catalyzed by SbCl3. Bulletin of the Korean Chemical Society, 32(5), 1575-1578. doi:10.5012/bkcs.2011.32.5.1575

El Osta, R., Carlin-Sinclair, A., Guillou, N., Walton, R. I., Vermoortele, F., Maes, M., … Millange, F. (2012). Liquid-Phase Adsorption and Separation of Xylene Isomers by the Flexible Porous Metal–Organic Framework MIL-53(Fe). Chemistry of Materials, 24(14), 2781-2791. doi:10.1021/cm301242d

Maes, M., Vermoortele, F., Alaerts, L., Couck, S., Kirschhock, C. E. A., Denayer, J. F. M., & De Vos, D. E. (2010). Separation of Styrene and Ethylbenzene on Metal−Organic Frameworks: Analogous Structures with Different Adsorption Mechanisms. Journal of the American Chemical Society, 132(43), 15277-15285. doi:10.1021/ja106142x

Alizadeh, A., & Rostamnia, S. (2010). Adducts of Diketene, Alcohols, and Aldehydes: Useful Building Blocks for 3,4-Dihydropyrimidinones and 1,4-Dihydropyridines. Synthesis, 2010(23), 4057-4060. doi:10.1055/s-0030-1258291

Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. Journal of Medicinal Chemistry, 34(2), 806-811. doi:10.1021/jm00106a048

Kappe, C. O. (2000). Biologically active dihydropyrimidones of the Biginelli-type — a literature survey. European Journal of Medicinal Chemistry, 35(12), 1043-1052. doi:10.1016/s0223-5234(00)01189-2

Janis, R. A., & Triggle, D. J. (1983). New developments in calcium ion channel antagonists. Journal of Medicinal Chemistry, 26(6), 775-785. doi:10.1021/jm00360a001

Martins, L., Vieira, K. M., Rios, L. M., & Cardoso, D. (2008). Basic catalyzed Knoevenagel condensation by FAU zeolites exchanged with alkylammonium cations. Catalysis Today, 133-135, 706-710. doi:10.1016/j.cattod.2007.12.043

McGuirk, C. M., Katz, M. J., Stern, C. L., Sarjeant, A. A., Hupp, J. T., Farha, O. K., & Mirkin, C. A. (2015). Turning On Catalysis: Incorporation of a Hydrogen-Bond-Donating Squaramide Moiety into a Zr Metal–Organic Framework. Journal of the American Chemical Society, 137(2), 919-925. doi:10.1021/ja511403t

Zhang, X., Zhang, Z., Boissonnault, J., & Cohen, S. M. (2016). Design and synthesis of squaramide-based MOFs as efficient MOF-supported hydrogen-bonding organocatalysts. Chemical Communications, 52(55), 8585-8588. doi:10.1039/c6cc03190k

R. Huisgen , in 1,3-Dipolar Cycloaddition Chemistry , ed. A. Padwa , Wiley , New York , 1984 , p. 1

Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective «Ligation» of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 41(14), 2596-2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4

Tornøe, C. W., Christensen, C., & Meldal, M. (2002). Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 67(9), 3057-3064. doi:10.1021/jo011148j

Mamidyala, S. K., & Finn, M. G. (2010). In situ click chemistry: probing the binding landscapes of biological molecules. Chemical Society Reviews, 39(4), 1252. doi:10.1039/b901969n

Hua, Y., & Flood, A. H. (2010). Click chemistry generates privileged CH hydrogen-bonding triazoles: the latest addition to anion supramolecular chemistry. Chemical Society Reviews, 39(4), 1262. doi:10.1039/b818033b

Hänni, K. D., & Leigh, D. A. (2010). The application of CuAAC ‘click’ chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev., 39(4), 1240-1251. doi:10.1039/b901974j

Hein, J. E., & Fokin, V. V. (2010). Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chemical Society Reviews, 39(4), 1302. doi:10.1039/b904091a

Meldal, M., & Tornøe, C. W. (2008). Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, 108(8), 2952-3015. doi:10.1021/cr0783479

Löber, S., Rodriguez-Loaiza, P., & Gmeiner, P. (2003). Click Linker:  Efficient and High-Yielding Synthesis of a New Family of SPOS Resins by 1,3-Dipolar Cycloaddition. Organic Letters, 5(10), 1753-1755. doi:10.1021/ol034520l

Lutz, J.-F. (2007). 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science. Angewandte Chemie International Edition, 46(7), 1018-1025. doi:10.1002/anie.200604050

Alvarez, R., Velazquez, S., San-Felix, A., Aquaro, S., Clercq, E. D., Perno, C.-F., … Camarasa, M. J. (1994). 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3’-spiro-5’’-(4’’-amino-1’’,2’’-oxathiole 2’’,2’’-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry, 37(24), 4185-4194. doi:10.1021/jm00050a015

Lo, V. K.-Y., Liu, Y., Wong, M.-K., & Che, C.-M. (2006). Gold(III) Salen Complex-Catalyzed Synthesis of Propargylamines via a Three-Component Coupling Reaction. Organic Letters, 8(8), 1529-1532. doi:10.1021/ol0528641

Matsuda, I., Sakakibara, J., & Nagashima, H. (1991). A Novel Approach to α-Silylmethylene-β-lactams via Rh-catalyzed Silylcarbonylation of Propargylamine Derivatives. Tetrahedron Letters, 32(50), 7431-7434. doi:10.1016/0040-4039(91)80126-q

Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., & Kasuga, K. (2005). Recyclable Catalyst for Conversion of Carbon Dioxide into Formate Attributable to an Oxyanion on the Catalyst Ligand. Journal of the American Chemical Society, 127(38), 13118-13119. doi:10.1021/ja054236k

Stoian, D. C., Taboada, E., Llorca, J., Molins, E., Medina, F., & Segarra, A. M. (2013). Boosted CO2 reaction with methanol to yield dimethyl carbonate over Mg–Al hydrotalcite-silica lyogels. Chemical Communications, 49(48), 5489. doi:10.1039/c3cc41298a

Jiang, T., Ma, X., Zhou, Y., Liang, S., Zhang, J., & Han, B. (2008). Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chemistry, 10(4), 465. doi:10.1039/b717868a

Wang, W., Wang, S., Ma, X., & Gong, J. (2011). Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 40(7), 3703. doi:10.1039/c1cs15008a

Lu, X.-B., & Darensbourg, D. J. (2012). Cobalt catalysts for the coupling of CO2and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev., 41(4), 1462-1484. doi:10.1039/c1cs15142h

North, M., Pasquale, R., & Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry, 12(9), 1514. doi:10.1039/c0gc00065e

He, Q., O’Brien, J. W., Kitselman, K. A., Tompkins, L. E., Curtis, G. C. T., & Kerton, F. M. (2014). Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal. Sci. Technol., 4(6), 1513-1528. doi:10.1039/c3cy00998j

Kim, Y. J., & Varma, R. S. (2005). Tetrahaloindate(III)-Based Ionic Liquids in the Coupling Reaction of Carbon Dioxide and Epoxides To Generate Cyclic Carbonates:  H-Bonding and Mechanistic Studies. The Journal of Organic Chemistry, 70(20), 7882-7891. doi:10.1021/jo050699x

Caló, V., Nacci, A., Monopoli, A., & Fanizzi, A. (2002). Cyclic Carbonate Formation from Carbon Dioxide and Oxiranes in Tetrabutylammonium Halides as Solvents and Catalysts. Organic Letters, 4(15), 2561-2563. doi:10.1021/ol026189w

Xie, Y., Wang, T.-T., Yang, R.-X., Huang, N.-Y., Zou, K., & Deng, W.-Q. (2014). Efficient Fixation of CO2by a Zinc-Coordinated Conjugated Microporous Polymer. ChemSusChem, 7(8), 2110-2114. doi:10.1002/cssc.201402162

Li, C.-G., Xu, L., Wu, P., Wu, H., & He, M. (2014). Efficient cycloaddition of epoxides and carbon dioxide over novel organic–inorganic hybrid zeolite catalysts. Chem. Commun., 50(99), 15764-15767. doi:10.1039/c4cc07620f

Zhang, Y., Yin, S., Luo, S., & Au, C. T. (2012). Cycloaddition of CO2 to Epoxides Catalyzed by Carboxyl-Functionalized Imidazolium-Based Ionic Liquid Grafted onto Cross-Linked Polymer. Industrial & Engineering Chemistry Research, 51(10), 3951-3957. doi:10.1021/ie203001u

Wang, J.-Q., Kong, D.-L., Chen, J.-Y., Cai, F., & He, L.-N. (2006). Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 249(1-2), 143-148. doi:10.1016/j.molcata.2006.01.008

Kleist, W., Jutz, F., Maciejewski, M., & Baiker, A. (2009). Mixed-Linker Metal-Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO2. European Journal of Inorganic Chemistry, 2009(24), 3552-3561. doi:10.1002/ejic.200900509

Yano, T., Matsui, H., Koike, T., Ishiguro, H., Fujihara, H., Yoshihara, M., & Maeshima, T. (1997). Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications, (12), 1129-1130. doi:10.1039/a608102i

Yasuda, H., He, L.-N., & Sakakura, T. (2002). Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. Journal of Catalysis, 209(2), 547-550. doi:10.1006/jcat.2002.3662

Xiong, Y., Wang, H., Wang, R., Yan, Y., Zheng, B., & Wang, Y. (2010). A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chemical Communications, 46(19), 3399. doi:10.1039/b926901k

Dai, W.-L., Chen, L., Yin, S.-F., Li, W.-H., Zhang, Y.-Y., Luo, S.-L., & Au, C.-T. (2010). High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer. Catalysis Letters, 137(1-2), 74-80. doi:10.1007/s10562-010-0346-8

Qi, C., Ye, J., Zeng, W., & Jiang, H. (2010). Polystyrene‐Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Advanced Synthesis & Catalysis, 352(11‐12), 1925-1933. doi:10.1002/adsc.201000261

Welton, T. (1999). Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chemical Reviews, 99(8), 2071-2084. doi:10.1021/cr980032t

Parnham, E. R., & Morris, R. E. (2007). Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Accounts of Chemical Research, 40(10), 1005-1013. doi:10.1021/ar700025k

Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887

Luo, S., Mi, X., Zhang, L., Liu, S., Xu, H., & Cheng, J.-P. (2006). Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angewandte Chemie International Edition, 45(19), 3093-3097. doi:10.1002/anie.200600048

Erfurt, K., Wandzik, I., Walczak, K., Matuszek, K., & Chrobok, A. (2014). Hydrogen-bond-rich ionic liquids as effective organocatalysts for Diels–Alder reactions. Green Chem., 16(7), 3508-3514. doi:10.1039/c4gc00380b

Wu, W., Han, B., Gao, H., Liu, Z., Jiang, T., & Huang, J. (2004). Desulfurization of Flue Gas: SO2 Absorption by an Ionic Liquid. Angewandte Chemie International Edition, 43(18), 2415-2417. doi:10.1002/anie.200353437

Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448

Clark, J. H., & Tavener, S. J. (2007). Alternative Solvents:  Shades of Green. Organic Process Research & Development, 11(1), 149-155. doi:10.1021/op060160g

Hangarge, R. V., Jarikote, D. V., & Shingare, M. S. (2002). Knoevenagel condensation reactions in an ionic liquidSee ref. 1. Green Chemistry, 4(3), 266-268. doi:10.1039/b111634g

Xu, D.-Z., Liu, Y., Shi, S., & Wang, Y. (2010). A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chemistry, 12(3), 514. doi:10.1039/b918595j

Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766

Shing, T. K. M., Yeung, & Su, P. L. (2006). Mild Manganese(III) Acetate Catalyzed Allylic Oxidation:  Application to Simple and Complex Alkenes. Organic Letters, 8(14), 3149-3151. doi:10.1021/ol0612298

Barton, D. H. R., Le Gloahec, V. N., Patin, H., & Launay, F. (1998). Radical chemistry of tert-butyl hydroperoxide (TBHP). Part 1. Studies of the FeIII–TBHP mechanism. New Journal of Chemistry, 22(6), 559-563. doi:10.1039/a709266k

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Yin, P., Chen, L., Wang, Z., Qu, R., Liu, X., Xu, Q., & Ren, S. (2012). Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel, 102, 499-505. doi:10.1016/j.fuel.2012.05.027

Oliveira, C. F., Dezaneti, L. M., Garcia, F. A. C., de Macedo, J. L., Dias, J. A., Dias, S. C. L., & Alvim, K. S. P. (2010). Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia☆. Applied Catalysis A: General, 372(2), 153-161. doi:10.1016/j.apcata.2009.10.027

Mohammad Fauzi, A. H., Amin, N. A. S., & Mat, R. (2014). Esterification of oleic acid to biodiesel using magnetic ionic liquid: Multi-objective optimization and kinetic study. Applied Energy, 114, 809-818. doi:10.1016/j.apenergy.2013.10.011

Chen, C., Wu, Z., Que, Y., Li, B., Guo, Q., Li, Z., … Guan, G. (2016). Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge. RSC Advances, 6(59), 54119-54128. doi:10.1039/c6ra03317b

Mohammad Fauzi, A. H., & Saidina Amin, N. A. (2013). Optimization of oleic acid esterification catalyzed by ionic liquid for green biodiesel synthesis. Energy Conversion and Management, 76, 818-827. doi:10.1016/j.enconman.2013.08.029

Lu, D., Zhao, J., Leng, Y., Jiang, P., & Zhang, C. (2016). Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate. Catalysis Communications, 83, 27-30. doi:10.1016/j.catcom.2016.05.004

Zhang, L., Cui, Y., Zhang, C., Wang, L., Wan, H., & Guan, G. (2012). Biodiesel Production by Esterification of Oleic Acid over Brønsted Acidic Ionic Liquid Supported onto Fe-Incorporated SBA-15. Industrial & Engineering Chemistry Research, 51(51), 16590-16596. doi:10.1021/ie302419y

Jiang, Y., Lu, J., Sun, K., Ma, L., & Ding, J. (2013). Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies. Energy Conversion and Management, 76, 980-985. doi:10.1016/j.enconman.2013.08.011

Wu, Q., Wan, H., Li, H., Song, H., & Chu, T. (2013). Bifunctional temperature-sensitive amphiphilic acidic ionic liquids for preparation of biodiesel. Catalysis Today, 200, 74-79. doi:10.1016/j.cattod.2012.07.007

Zhen, B., Li, H., Jiao, Q., Li, Y., Wu, Q., & Zhang, Y. (2012). SiW12O40-Based Ionic Liquid Catalysts: Catalytic Esterification of Oleic Acid for Biodiesel Production. Industrial & Engineering Chemistry Research, 51(31), 10374-10380. doi:10.1021/ie301453c

Zhang, H., Xu, F., Zhou, X., Zhang, G., & Wang, C. (2007). A Brønsted acidic ionic liquid as an efficient and reusable catalyst system for esterification. Green Chemistry, 9(11), 1208. doi:10.1039/b705480g

Ferreira, M. C., Meirelles, A. J. A., & Batista, E. A. C. (2013). Study of the Fusel Oil Distillation Process. Industrial & Engineering Chemistry Research, 52(6), 2336-2351. doi:10.1021/ie300665z

Chinchilla, R., & Nájera, C. (2013). Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 114(3), 1783-1826. doi:10.1021/cr400133p

Sun, L.-B., Li, J.-R., Park, J., & Zhou, H.-C. (2011). Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 134(1), 126-129. doi:10.1021/ja209698f

Deng, D., Yang, Y., Gong, Y., Li, Y., Xu, X., & Wang, Y. (2013). Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chemistry, 15(9), 2525. doi:10.1039/c3gc40779a

Yabe, Y., Yamada, T., Nagata, S., Sawama, Y., Monguchi, Y., & Sajiki, H. (2012). Development of a Palladium on Boron Nitride Catalyst and its Application to the Semihydrogenation of Alkynes. Advanced Synthesis & Catalysis, 354(7), 1264-1268. doi:10.1002/adsc.201100936

Long, W., Brunelli, N. A., Didas, S. A., Ping, E. W., & Jones, C. W. (2013). Aminopolymer–Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catalysis, 3(8), 1700-1708. doi:10.1021/cs3007395

Sajiki, H., Mori, S., Ohkubo, T., Ikawa, T., Kume, A., Maegawa, T., & Monguchi, Y. (2008). Partial Hydrogenation of Alkynes tocis-Olefins by Using a Novel Pd0–Polyethyleneimine Catalyst. Chemistry - A European Journal, 14(17), 5109-5111. doi:10.1002/chem.200800535

Li, M., Schnablegger, H., & Mann, S. (1999). Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature, 402(6760), 393-395. doi:10.1038/46509

Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

Gadipelli, S., Ford, J., Zhou, W., Wu, H., Udovic, T. J., & Yildirim, T. (2011). Nanoconfinement and Catalytic Dehydrogenation of Ammonia Borane by Magnesium‐Metal–Organic‐Framework‐74. Chemistry – A European Journal, 17(22), 6043-6047. doi:10.1002/chem.201100090

Furukawa, H., Müller, U., & Yaghi, O. M. (2015). «Heterogeneity within Order» in Metal-Organic Frameworks. Angewandte Chemie International Edition, 54(11), 3417-3430. doi:10.1002/anie.201410252

Yuan, S., Zou, L., Qin, J.-S., Li, J., Huang, L., Feng, L., … Zhou, H.-C. (2017). Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 8(1). doi:10.1038/ncomms15356

Kim, D., Kim, D. W., Buyukcakir, O., Kim, M.-K., Polychronopoulou, K., & Coskun, A. (2017). Highly Hydrophobic ZIF-8/Carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2. Advanced Functional Materials, 27(23), 1700706. doi:10.1002/adfm.201700706

Miralda, C. M., Macias, E. E., Zhu, M., Ratnasamy, P., & Carreon, M. A. (2011). Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO2 to Chloropropene Carbonate. ACS Catalysis, 2(1), 180-183. doi:10.1021/cs200638h

Bueken, B., Van Velthoven, N., Willhammar, T., Stassin, T., Stassen, I., Keen, D. A., … Bennett, T. D. (2017). Gel-based morphological design of zirconium metal–organic frameworks. Chemical Science, 8(5), 3939-3948. doi:10.1039/c6sc05602d

Dang, Q.-Q., Zhan, Y.-F., Duan, L.-N., & Zhang, X.-M. (2015). A pyridyl-decorated MOF-505 analogue exhibiting hierarchical porosity, selective CO2 capture and catalytic capacity. Dalton Transactions, 44(46), 20027-20031. doi:10.1039/c5dt01943e

Yang, J., Wang, X., Dai, F., Zhang, L., Wang, R., & Sun, D. (2014). Improving the Porosity and Catalytic Capacity of a Zinc Paddlewheel Metal-Organic Framework (MOF) through Metal-Ion Metathesis in a Single-Crystal-to-Single-Crystal Fashion. Inorganic Chemistry, 53(19), 10649-10653. doi:10.1021/ic5017092

Wang, R., Wang, Z., Xu, Y., Dai, F., Zhang, L., & Sun, D. (2014). Porous Zirconium Metal–Organic Framework Constructed from 2D → 3D Interpenetration Based on a 3,6-Connected kgd Net. Inorganic Chemistry, 53(14), 7086-7088. doi:10.1021/ic5012764

Fujita, M., Kwon, Y. J., Washizu, S., & Ogura, K. (1994). Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4’-Bipyridine. Journal of the American Chemical Society, 116(3), 1151-1152. doi:10.1021/ja00082a055

Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., … Pombeiro, A. J. L. (2017). Lanthanide metal organic frameworks based on dicarboxyl-functionalized arylhydrazone of barbituric acid: syntheses, structures, luminescence and catalytic cyanosilylation of aldehydes. Dalton Transactions, 46(26), 8649-8657. doi:10.1039/c7dt01056g

Chen, Y., Huang, X., Zhang, S., Li, S., Cao, S., Pei, X., … Wang, B. (2016). Shaping of Metal–Organic Frameworks: From Fluid to Shaped Bodies and Robust Foams. Journal of the American Chemical Society, 138(34), 10810-10813. doi:10.1021/jacs.6b06959

Zhang, T., Liu, W., Meng, G., Yang, Q., Sun, X., & Liu, J. (2017). Construction of Hierarchical Copper-Based Metal-Organic Framework Nanoarrays as Functional Structured Catalysts. ChemCatChem, 9(10), 1771-1775. doi:10.1002/cctc.201700060

Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem