- -

Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms

Mostrar el registro completo del ítem

Aguilar-Maldonado, J.; Santamaria-Del-Angel, E.; González-Silvera, A.; Sebastiá-Frasquet, M. (2019). Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms. Sensors. 19(15). https://doi.org/10.3390/s19153339

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147745

Ficheros en el ítem

Metadatos del ítem

Título: Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms
Autor: Aguilar-Maldonado, Jesús-Antonio Santamaria-del-Angel, Eduardo González-Silvera, Adriana Sebastiá-Frasquet, M.-T.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The baseline of a specific variable defines the average behavior of that variable and it must be built from long data series that represent its spatial and temporal variability. In coastal and marine waters, phytoplankton ...[+]
Palabras clave: Remote sensing , Absorption coefficients , Phytoplankton bloom , MODIS-Aqua , Pacific Ocean , Baseline
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19153339
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19153339
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//291025/
info:eu-repo/grantAgreement/MECD//CAS18%2F00107/
Agradecimientos:
This research was funded by the Council of Science and Technology of Mexico (CONACYT by its acronym in Spanish) with a doctorate scholarship to J.A.A.-M., with the announcement number 291025 in 2015. Also, it was funded ...[+]
Tipo: Artículo

References

Carbonel H., C. A. A., & Valentin, J. L. (1999). Numerical modelling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brazil). Ecological Modelling, 116(2-3), 135-148. doi:10.1016/s0304-3800(98)00201-4

Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., & Karl, D. M. (2008). Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations. Progress in Oceanography, 76(1), 2-38. doi:10.1016/j.pocean.2007.10.002

Cox, R. F., Issa, R. R. A., & Ahrens, D. (2003). Management’s Perception of Key Performance Indicators for Construction. Journal of Construction Engineering and Management, 129(2), 142-151. doi:10.1061/(asce)0733-9364(2003)129:2(142) [+]
Carbonel H., C. A. A., & Valentin, J. L. (1999). Numerical modelling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brazil). Ecological Modelling, 116(2-3), 135-148. doi:10.1016/s0304-3800(98)00201-4

Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., & Karl, D. M. (2008). Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations. Progress in Oceanography, 76(1), 2-38. doi:10.1016/j.pocean.2007.10.002

Cox, R. F., Issa, R. R. A., & Ahrens, D. (2003). Management’s Perception of Key Performance Indicators for Construction. Journal of Construction Engineering and Management, 129(2), 142-151. doi:10.1061/(asce)0733-9364(2003)129:2(142)

Zheng, G., & DiGiacomo, P. M. (2017). Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sensing of Environment, 201, 331-341. doi:10.1016/j.rse.2017.09.008

Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., … Novak, M. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment, 205, 151-165. doi:10.1016/j.rse.2017.11.014

Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., & Brando, V. E. (2014). A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography, 123, 123-144. doi:10.1016/j.pocean.2013.12.008

Garver, S. A., & Siegel, D. A. (1997). Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. Journal of Geophysical Research: Oceans, 102(C8), 18607-18625. doi:10.1029/96jc03243

Kahru, M., Lee, Z., Kudela, R. M., Manzano-Sarabia, M., & Greg Mitchell, B. (2015). Multi-satellite time series of inherent optical properties in the California Current. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 91-106. doi:10.1016/j.dsr2.2013.07.023

Kratzer, S., & Moore, G. (2018). Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans. Remote Sensing, 10(3), 418. doi:10.3390/rs10030418

Werdell, P. J., McKinna, L. I. W., Boss, E., Ackleson, S. G., Craig, S. E., Gregg, W. W., … Zhang, X. (2018). An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Progress in Oceanography, 160, 186-212. doi:10.1016/j.pocean.2018.01.001

Costa Goela, P., Icely, J., Cristina, S., Newton, A., Moore, G., & Cordeiro, C. (2013). Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing. Continental Shelf Research, 52, 119-132. doi:10.1016/j.csr.2012.11.009

Soja-Woźniak, M., Craig, S., Kratzer, S., Wojtasiewicz, B., Darecki, M., & Jones, C. (2017). A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters. Remote Sensing, 9(4), 343. doi:10.3390/rs9040343

Pavlov, A. K., Taskjelle, T., Kauko, H. M., Hamre, B., Hudson, S. R., Assmy, P., … Granskog, M. A. (2017). Altered inherent optical properties and estimates of the underwater light field during an Arctic under-ice bloom of Phaeocystis pouchetii. Journal of Geophysical Research: Oceans, 122(6), 4939-4961. doi:10.1002/2016jc012471

Aguilar-Maldonado, J. A., Santamaría-del-Ángel, E., & Sebastiá-Frasquet, M. T. (2017). Reflectances of SPOT multispectral images associated with the turbidity of the Upper Gulf of California. Revista de Teledetección, (50), 1. doi:10.4995/raet.2017.7795

Binding, C. E., Greenberg, T. A., McCullough, G., Watson, S. B., & Page, E. (2018). An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. Journal of Great Lakes Research, 44(3), 436-446. doi:10.1016/j.jglr.2018.04.001

Aguilar-Maldonado, J., Santamaría-Del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O., & Sebastiá-Frasquet, M.-T. (2018). Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico). Sustainability, 10(6), 1894. doi:10.3390/su10061894

Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y., Devred, E., … White, G. N. (2015). The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sensing of Environment, 162, 271-294. doi:10.1016/j.rse.2013.09.016

Aguilar-Maldonado, J., Santamaría-del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O., López, L., Gutiérrez-Magness, A., … Sebastiá-Frasquet, M.-T. (2018). Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters. Water, 10(2), 129. doi:10.3390/w10020129

Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., … Franks, P. (2016). Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography, 29(2). doi:10.5670/oceanog.2016.32

Di Lorenzo, E., & Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6(11), 1042-1047. doi:10.1038/nclimate3082

Mkrtchyan, F. A., & Varotsos, C. A. (2018). A New Monitoring System for the Surface Marine Anomalies. Water, Air, & Soil Pollution, 229(8). doi:10.1007/s11270-018-3938-3

Gan, R., Yang, Y., & Ma, Y. (2018). Modelling the impacts of the Pacific Ocean sea surface temperature anomalies on a drought event in southwestern China with a piecewise-integration method. International Journal of Climatology, 39(2), 799-813. doi:10.1002/joc.5843

Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., & Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461(7263), 511-514. doi:10.1038/nature08316

Peña Manjarrez, J. (2009). Environmental factors influencing the variability of Lingulodinium polyedrum and Scrippsiella trochoidea (Dinophyceae) cyst production. Ciencias Marinas, 35(1), 1-14. doi:10.7773/cm.v35i1.1406

Cepeda-Morales, J. (2017). Response of primary producers to the hydrographic variability in the southern region of the California Current System. Ciencias Marinas, 40(2), 123-135. doi:10.7773/cm.v43i2.2752

Barocio-Leon, O. (2007). Phytoplankton primary productivity in the euphotic zone of the California Current System estimated from CZCS imagery. Ciencias Marinas, 33(1), 59-72. doi:10.7773/cm.v33i1.1037

INEGI 2015 (Instituto Nacional de Estadística y Geografía/National Institute of Statistic and Geography)http://www.beta.inegi.org.mx/programas/intercensal/2015/default.html#Tabulados

Gutierrez-Mejia, E., Lares, M. L., Huerta-Diaz, M. A., & Delgadillo-Hinojosa, F. (2016). Cadmium and phosphate variability during algal blooms of the dinoflagellate Lingulodinium polyedrum in Todos Santos Bay, Baja California, Mexico. Science of The Total Environment, 541, 865-876. doi:10.1016/j.scitotenv.2015.09.081

Mateos, E., Marinone, S. G., & Parés-Sierra, A. (2009). Towards the numerical simulation of the summer circulation in Todos Santos Bay, Ensenada, B.C. Mexico. Ocean Modelling, 27(1-2), 107-112. doi:10.1016/j.ocemod.2008.11.002

SOMMER, U., & LENGFELLNER, K. (2008). Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology, 14(6), 1199-1208. doi:10.1111/j.1365-2486.2008.01571.x

Winder, M., & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia, 698(1), 5-16. doi:10.1007/s10750-012-1149-2

Orozco-Borbón, M. V., Rico-Mora, R., Weisberg, S. B., Noble, R. T., Dorsey, J. H., Leecaster, M. K., & McGee, C. D. (2006). Bacteriological water quality along the Tijuana–Ensenada, Baja California, México shoreline. Marine Pollution Bulletin, 52(10), 1190-1196. doi:10.1016/j.marpolbul.2006.02.005

Gregg, W. W., & Casey, N. W. (2004). Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sensing of Environment, 93(4), 463-479. doi:10.1016/j.rse.2003.12.012

Sebastiá, M.-T., Rodilla, M., Sanchis, J.-A., Altur, V., Gadea, I., & Falco, S. (2012). Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agriculture, Ecosystems & Environment, 152, 10-20. doi:10.1016/j.agee.2012.02.006

Wilson, C. (2003). Late Summer chlorophyll blooms in the oligotrophic North Pacific Subtropical Gyre. Geophysical Research Letters, 30(18). doi:10.1029/2003gl017770

Villareal, T. A., Adornato, L., Wilson, C., & Schoenbaechler, C. A. (2011). Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: A disconnect. Journal of Geophysical Research, 116(C3). doi:10.1029/2010jc006268

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem