- -

Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aguilar-Maldonado, Jesús-Antonio es_ES
dc.contributor.author Santamaria-del-Angel, Eduardo es_ES
dc.contributor.author González-Silvera, Adriana es_ES
dc.contributor.author Sebastiá-Frasquet, M.-T. es_ES
dc.date.accessioned 2020-07-10T03:31:57Z
dc.date.available 2020-07-10T03:31:57Z
dc.date.issued 2019-08-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147745
dc.description.abstract [EN] The baseline of a specific variable defines the average behavior of that variable and it must be built from long data series that represent its spatial and temporal variability. In coastal and marine waters, phytoplankton can produce blooms characterized by a wide range of total cells number or chlorophyll a concentration. Classifying a phytoplankton abundance increase as a bloom depends on the species, the study area and the season. The objective of this study was to define the baseline of satellite absorption coefficients in Todos Santos Bay (Baja California, Mexico) to determine the presence of phytoplankton blooms based on the satellite inherent optical properties index (satellite IOP index). Two field points were selected according to historical bloom reports. To build the baseline, the data of phytoplankton absorption coefficients (aphy,GIOP ) and detritus plus colored dissolved organic matter (CDOM) (adCDOM,GIOP ) from the generalized inherent optical property (GIOP) satellite model of the NASA moderate resolution imaging spectroradiometer (MODIS-Aqua) sensor was studied for the period 2003 to 2016. Field data taken during a phytoplankton bloom event on June 2017 was used to validate the use of satellite products. The association between field and satellite data had a significant positive correlation. The satellite baseline detected a trend change from high values to low values of the satellite IOP index since 2010. Improved wastewater treatment to waters discharged into the Bay, and increased aquaculture of filter-feeding mollusks could have been the cause. The methodology proposed in this study can be a supplementary tool for permanent in situ monitoring programs. This methodology offers several advantages: A complete spatial coverage of the specific coastal area under study, appropriate temporal resolution and a tool for building an objective baseline to detect deviation from average conditions during phytoplankton bloom events. es_ES
dc.description.sponsorship This research was funded by the Council of Science and Technology of Mexico (CONACYT by its acronym in Spanish) with a doctorate scholarship to J.A.A.-M., with the announcement number 291025 in 2015. Also, it was funded by the Spanish Ministry of Education Culture and Sports with a post-doctoral research grant to M.T.S.-F., number CAS18/00107, in support of her stay at the Universidad Autonoma de Baja California (Mexico). The APC was funded by the Secretariat of Public Education of Mexico (SEP) under the Program for Professional Development Teacher. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Remote sensing es_ES
dc.subject Absorption coefficients es_ES
dc.subject Phytoplankton bloom es_ES
dc.subject MODIS-Aqua es_ES
dc.subject Pacific Ocean es_ES
dc.subject Baseline es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19153339 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//291025/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//CAS18%2F00107/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Aguilar-Maldonado, J.; Santamaria-Del-Angel, E.; González-Silvera, A.; Sebastiá-Frasquet, M. (2019). Detection of Phytoplankton Temporal Anomalies Based on Satellite Inherent Optical Properties: A Tool for Monitoring Phytoplankton Blooms. Sensors. 19(15). https://doi.org/10.3390/s19153339 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19153339 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 15 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31366087 es_ES
dc.identifier.pmcid PMC6696259 es_ES
dc.relation.pasarela S\392042 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Secretaría de Educación Pública, México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Carbonel H., C. A. A., & Valentin, J. L. (1999). Numerical modelling of phytoplankton bloom in the upwelling ecosystem of Cabo Frio (Brazil). Ecological Modelling, 116(2-3), 135-148. doi:10.1016/s0304-3800(98)00201-4 es_ES
dc.description.references Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., & Karl, D. M. (2008). Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations. Progress in Oceanography, 76(1), 2-38. doi:10.1016/j.pocean.2007.10.002 es_ES
dc.description.references Cox, R. F., Issa, R. R. A., & Ahrens, D. (2003). Management’s Perception of Key Performance Indicators for Construction. Journal of Construction Engineering and Management, 129(2), 142-151. doi:10.1061/(asce)0733-9364(2003)129:2(142) es_ES
dc.description.references Zheng, G., & DiGiacomo, P. M. (2017). Remote sensing of chlorophyll-a in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sensing of Environment, 201, 331-341. doi:10.1016/j.rse.2017.09.008 es_ES
dc.description.references Cao, F., Tzortziou, M., Hu, C., Mannino, A., Fichot, C. G., Del Vecchio, R., … Novak, M. (2018). Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sensing of Environment, 205, 151-165. doi:10.1016/j.rse.2017.11.014 es_ES
dc.description.references Blondeau-Patissier, D., Gower, J. F. R., Dekker, A. G., Phinn, S. R., & Brando, V. E. (2014). A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography, 123, 123-144. doi:10.1016/j.pocean.2013.12.008 es_ES
dc.description.references Garver, S. A., & Siegel, D. A. (1997). Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea. Journal of Geophysical Research: Oceans, 102(C8), 18607-18625. doi:10.1029/96jc03243 es_ES
dc.description.references Kahru, M., Lee, Z., Kudela, R. M., Manzano-Sarabia, M., & Greg Mitchell, B. (2015). Multi-satellite time series of inherent optical properties in the California Current. Deep Sea Research Part II: Topical Studies in Oceanography, 112, 91-106. doi:10.1016/j.dsr2.2013.07.023 es_ES
dc.description.references Kratzer, S., & Moore, G. (2018). Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans. Remote Sensing, 10(3), 418. doi:10.3390/rs10030418 es_ES
dc.description.references Werdell, P. J., McKinna, L. I. W., Boss, E., Ackleson, S. G., Craig, S. E., Gregg, W. W., … Zhang, X. (2018). An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Progress in Oceanography, 160, 186-212. doi:10.1016/j.pocean.2018.01.001 es_ES
dc.description.references Costa Goela, P., Icely, J., Cristina, S., Newton, A., Moore, G., & Cordeiro, C. (2013). Specific absorption coefficient of phytoplankton off the Southwest coast of the Iberian Peninsula: A contribution to algorithm development for ocean colour remote sensing. Continental Shelf Research, 52, 119-132. doi:10.1016/j.csr.2012.11.009 es_ES
dc.description.references Soja-Woźniak, M., Craig, S., Kratzer, S., Wojtasiewicz, B., Darecki, M., & Jones, C. (2017). A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters. Remote Sensing, 9(4), 343. doi:10.3390/rs9040343 es_ES
dc.description.references Pavlov, A. K., Taskjelle, T., Kauko, H. M., Hamre, B., Hudson, S. R., Assmy, P., … Granskog, M. A. (2017). Altered inherent optical properties and estimates of the underwater light field during an Arctic under-ice bloom of Phaeocystis pouchetii. Journal of Geophysical Research: Oceans, 122(6), 4939-4961. doi:10.1002/2016jc012471 es_ES
dc.description.references Aguilar-Maldonado, J. A., Santamaría-del-Ángel, E., & Sebastiá-Frasquet, M. T. (2017). Reflectances of SPOT multispectral images associated with the turbidity of the Upper Gulf of California. Revista de Teledetección, (50), 1. doi:10.4995/raet.2017.7795 es_ES
dc.description.references Binding, C. E., Greenberg, T. A., McCullough, G., Watson, S. B., & Page, E. (2018). An analysis of satellite-derived chlorophyll and algal bloom indices on Lake Winnipeg. Journal of Great Lakes Research, 44(3), 436-446. doi:10.1016/j.jglr.2018.04.001 es_ES
dc.description.references Aguilar-Maldonado, J., Santamaría-Del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O., & Sebastiá-Frasquet, M.-T. (2018). Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico). Sustainability, 10(6), 1894. doi:10.3390/su10061894 es_ES
dc.description.references Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y., Devred, E., … White, G. N. (2015). The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sensing of Environment, 162, 271-294. doi:10.1016/j.rse.2013.09.016 es_ES
dc.description.references Aguilar-Maldonado, J., Santamaría-del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O., López, L., Gutiérrez-Magness, A., … Sebastiá-Frasquet, M.-T. (2018). Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters. Water, 10(2), 129. doi:10.3390/w10020129 es_ES
dc.description.references Cavole, L., Demko, A., Diner, R., Giddings, A., Koester, I., … Franks, P. (2016). Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography, 29(2). doi:10.5670/oceanog.2016.32 es_ES
dc.description.references Di Lorenzo, E., & Mantua, N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, 6(11), 1042-1047. doi:10.1038/nclimate3082 es_ES
dc.description.references Mkrtchyan, F. A., & Varotsos, C. A. (2018). A New Monitoring System for the Surface Marine Anomalies. Water, Air, & Soil Pollution, 229(8). doi:10.1007/s11270-018-3938-3 es_ES
dc.description.references Gan, R., Yang, Y., & Ma, Y. (2018). Modelling the impacts of the Pacific Ocean sea surface temperature anomalies on a drought event in southwestern China with a piecewise-integration method. International Journal of Climatology, 39(2), 799-813. doi:10.1002/joc.5843 es_ES
dc.description.references Yeh, S.-W., Kug, J.-S., Dewitte, B., Kwon, M.-H., Kirtman, B. P., & Jin, F.-F. (2009). El Niño in a changing climate. Nature, 461(7263), 511-514. doi:10.1038/nature08316 es_ES
dc.description.references Peña Manjarrez, J. (2009). Environmental factors influencing the variability of Lingulodinium polyedrum and Scrippsiella trochoidea (Dinophyceae) cyst production. Ciencias Marinas, 35(1), 1-14. doi:10.7773/cm.v35i1.1406 es_ES
dc.description.references Cepeda-Morales, J. (2017). Response of primary producers to the hydrographic variability in the southern region of the California Current System. Ciencias Marinas, 40(2), 123-135. doi:10.7773/cm.v43i2.2752 es_ES
dc.description.references Barocio-Leon, O. (2007). Phytoplankton primary productivity in the euphotic zone of the California Current System estimated from CZCS imagery. Ciencias Marinas, 33(1), 59-72. doi:10.7773/cm.v33i1.1037 es_ES
dc.description.references INEGI 2015 (Instituto Nacional de Estadística y Geografía/National Institute of Statistic and Geography)http://www.beta.inegi.org.mx/programas/intercensal/2015/default.html#Tabulados es_ES
dc.description.references Gutierrez-Mejia, E., Lares, M. L., Huerta-Diaz, M. A., & Delgadillo-Hinojosa, F. (2016). Cadmium and phosphate variability during algal blooms of the dinoflagellate Lingulodinium polyedrum in Todos Santos Bay, Baja California, Mexico. Science of The Total Environment, 541, 865-876. doi:10.1016/j.scitotenv.2015.09.081 es_ES
dc.description.references Mateos, E., Marinone, S. G., & Parés-Sierra, A. (2009). Towards the numerical simulation of the summer circulation in Todos Santos Bay, Ensenada, B.C. Mexico. Ocean Modelling, 27(1-2), 107-112. doi:10.1016/j.ocemod.2008.11.002 es_ES
dc.description.references SOMMER, U., & LENGFELLNER, K. (2008). Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology, 14(6), 1199-1208. doi:10.1111/j.1365-2486.2008.01571.x es_ES
dc.description.references Winder, M., & Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia, 698(1), 5-16. doi:10.1007/s10750-012-1149-2 es_ES
dc.description.references Orozco-Borbón, M. V., Rico-Mora, R., Weisberg, S. B., Noble, R. T., Dorsey, J. H., Leecaster, M. K., & McGee, C. D. (2006). Bacteriological water quality along the Tijuana–Ensenada, Baja California, México shoreline. Marine Pollution Bulletin, 52(10), 1190-1196. doi:10.1016/j.marpolbul.2006.02.005 es_ES
dc.description.references Gregg, W. W., & Casey, N. W. (2004). Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sensing of Environment, 93(4), 463-479. doi:10.1016/j.rse.2003.12.012 es_ES
dc.description.references Sebastiá, M.-T., Rodilla, M., Sanchis, J.-A., Altur, V., Gadea, I., & Falco, S. (2012). Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agriculture, Ecosystems & Environment, 152, 10-20. doi:10.1016/j.agee.2012.02.006 es_ES
dc.description.references Wilson, C. (2003). Late Summer chlorophyll blooms in the oligotrophic North Pacific Subtropical Gyre. Geophysical Research Letters, 30(18). doi:10.1029/2003gl017770 es_ES
dc.description.references Villareal, T. A., Adornato, L., Wilson, C., & Schoenbaechler, C. A. (2011). Summer blooms of diatom-diazotroph assemblages and surface chlorophyll in the North Pacific gyre: A disconnect. Journal of Geophysical Research, 116(C3). doi:10.1029/2010jc006268 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem