- -

Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes

Mostrar el registro completo del ítem

Sardanyes, J.; Arderiu, A.; Elena Fito, SF.; Alarcon, T. (2018). Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes. Journal of The Royal Society Interface. 15(142):1-10. https://doi.org/10.1098/rsif.2018.0129

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147921

Ficheros en el ítem

Metadatos del ítem

Título: Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes
Autor: Sardanyes, J. Arderiu, A. ELENA FITO, SANTIAGO FCO Alarcon, T.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric ...[+]
Palabras clave: Complex systems , Intracellular viral dynamics , Noise-induced bistability , Nonlinear dynamics , Replication mode , RNA viruses
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of The Royal Society Interface. (issn: 1742-5689 )
DOI: 10.1098/rsif.2018.0129
Editorial:
The Royal Society
Versión del editor: https://doi.org/10.1098/rsif.2018.0129
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2015-71509-C2-1-R/ES/MODELIZACION Y ANALISIS MULTIESCALA EN BIOLOGIA DE SISTEMAS Y BIOMEDICINA/
info:eu-repo/grantAgreement/MINECO//MDM-2014-0445/ES/Barcelona Graduate School of Mathematics (BGSMath)/
info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1307/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
Agradecimientos:
The research leading to these results has received funding from 'la Caixa' Foundation. J.S. and T.A. have been partially funded by the CERCA Program of the Generalitat de Catalunya, MINECO grant no. MTM2015-71509-C2-1-R ...[+]
Tipo: Artículo

References

Sardanyés, J., Solé, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09

Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247

Sardanyés, J., Martínez, F., Daròs, J.-A., & Elena, S. F. (2011). Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of The Royal Society Interface, 9(69), 768-776. doi:10.1098/rsif.2011.0471 [+]
Sardanyés, J., Solé, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09

Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247

Sardanyés, J., Martínez, F., Daròs, J.-A., & Elena, S. F. (2011). Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of The Royal Society Interface, 9(69), 768-776. doi:10.1098/rsif.2011.0471

Martínez, F., Sardanyés, J., Elena, S. F., & Daròs, J.-A. (2011). Dynamics of a Plant RNA Virus Intracellular Accumulation: Stamping Machine vs. Geometric Replication. Genetics, 188(3), 637-646. doi:10.1534/genetics.111.129114

García-Villada, L., & Drake, J. W. (2012). The Three Faces of Riboviral Spontaneous Mutation: Spectrum, Mode of Genome Replication, and Mutation Rate. PLoS Genetics, 8(7), e1002832. doi:10.1371/journal.pgen.1002832

Schulte, M. B., Draghi, J. A., Plotkin, J. B., & Andino, R. (2015). Experimentally guided models reveal replication principles that shape the mutation distribution of RNA viruses. eLife, 4. doi:10.7554/elife.03753

Chao, L., Rang, C. U., & Wong, L. E. (2002). Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage φ6. Journal of Virology, 76(7), 3276-3281. doi:10.1128/jvi.76.7.3276-3281.2002

Combe, M., Garijo, R., Geller, R., Cuevas, J. M., & Sanjuán, R. (2015). Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units. Cell Host & Microbe, 18(4), 424-432. doi:10.1016/j.chom.2015.09.009

Schulte, M. B., & Andino, R. (2014). Single-Cell Analysis Uncovers Extensive Biological Noise in Poliovirus Replication. Journal of Virology, 88(11), 6205-6212. doi:10.1128/jvi.03539-13

Gutiérrez, S., Michalakis, Y., & Blanc, S. (2012). Virus population bottlenecks during within-host progression and host-to-host transmission. Current Opinion in Virology, 2(5), 546-555. doi:10.1016/j.coviro.2012.08.001

Romero-Brey, I., & Bartenschlager, R. (2016). Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses, 8(6), 160. doi:10.3390/v8060160

Lin, Y. T., Kim, H., & Doering, C. R. (2012). Features of Fast Living: On the Weak Selection for Longevity in Degenerate Birth-Death Processes. Journal of Statistical Physics, 148(4), 647-663. doi:10.1007/s10955-012-0479-9

Kogan, O., Khasin, M., Meerson, B., Schneider, D., & Myers, C. R. (2014). Two-strain competition in quasineutral stochastic disease dynamics. Physical Review E, 90(4). doi:10.1103/physreve.90.042149

Hirsch, M. W., Pugh, C. C., & Shub, M. (1977). Invariant Manifolds. Lecture Notes in Mathematics. doi:10.1007/bfb0092042

Kurtz, T. G. (1981). The Central Limit Theorem for Markov Chains. The Annals of Probability, 9(4), 557-560. doi:10.1214/aop/1176994361

Kang, H.-W., Kurtz, T. G., & Popovic, L. (2014). Central limit theorems and diffusion approximations for multiscale Markov chain models. The Annals of Applied Probability, 24(2), 721-759. doi:10.1214/13-aap934

Anderson, D. F., & Kurtz, T. G. (2015). Stochastic Analysis of Biochemical Systems. doi:10.1007/978-3-319-16895-1

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008

Luria, S. E. (1951). THE FREQUENCY DISTRIBUTION OF SPONTANEOUS BACTERIOPHAGE MUTANTS AS EVIDENCE FOR THE EXPONENTIAL RATE OF PHAGE REPRODUCTION. Cold Spring Harbor Symposia on Quantitative Biology, 16(0), 463-470. doi:10.1101/sqb.1951.016.01.033

Sardanyés, J. (2014). Viral RNA Replication Modes: Evolutionary and Dynamical Implications. Extended Abstracts Spring 2013, 115-119. doi:10.1007/978-3-319-08138-0_21

Sardanyés, J., & Elena, S. F. (2011). Quasispecies Spatial Models for RNA Viruses with Different Replication Modes and Infection Strategies. PLoS ONE, 6(9), e24884. doi:10.1371/journal.pone.0024884

Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70(1), 223-287. doi:10.1103/revmodphys.70.223

Van den Broeck, C., Parrondo, J. M. R., & Toral, R. (1994). Noise-Induced Nonequilibrium Phase Transition. Physical Review Letters, 73(25), 3395-3398. doi:10.1103/physrevlett.73.3395

Graham, R., & Schenzle, A. (1982). Stabilization by multiplicative noise. Physical Review A, 26(3), 1676-1685. doi:10.1103/physreva.26.1676

Lücke, M., & Schank, F. (1985). Response to Parametric Modulation near an Instability. Physical Review Letters, 54(14), 1465-1468. doi:10.1103/physrevlett.54.1465

Ochab-Marcinek, A., & Gudowska-Nowak, E. (2004). Population growth and control in stochastic models of cancer development. Physica A: Statistical Mechanics and its Applications, 343, 557-572. doi:10.1016/j.physa.2004.06.071

Fiasconaro, A., Spagnolo, B., & Boccaletti, S. (2005). Signatures of noise-enhanced stability in metastable states. Physical Review E, 72(6). doi:10.1103/physreve.72.061110

Togashi, Y., & Kaneko, K. (2001). Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System. Physical Review Letters, 86(11), 2459-2462. doi:10.1103/physrevlett.86.2459

Biancalani, T., Dyson, L., & McKane, A. J. (2014). Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies. Physical Review Letters, 112(3). doi:10.1103/physrevlett.112.038101

To, T.-L., & Maheshri, N. (2010). Noise Can Induce Bimodality in Positive Transcriptional Feedback Loops Without Bistability. Science, 327(5969), 1142-1145. doi:10.1126/science.1178962

Sardanyés, J., & Alarcón, T. (2018). Noise-induced bistability in the fate of cancer phenotypic quasispecies: a bit-strings approach. Scientific Reports, 8(1). doi:10.1038/s41598-018-19552-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem