- -

Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sardanyes, J. es_ES
dc.contributor.author Arderiu, A. es_ES
dc.contributor.author ELENA FITO, SANTIAGO FCO es_ES
dc.contributor.author Alarcon, T. es_ES
dc.date.accessioned 2020-07-14T03:31:19Z
dc.date.available 2020-07-14T03:31:19Z
dc.date.issued 2018-05 es_ES
dc.identifier.issn 1742-5689 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147921
dc.description.abstract [EN] Evolutionary and dynamical investigations into real viral populations indicate that RNA replication can range between the two extremes represented by so-called 'stamping machine replication' (SMR) and 'geometric replication' (GR). The impact of asymmetries in replication for single-stranded (+) sense RNA viruses has been mainly studied with deterministic models. However, viral replication should be better described by including stochasticity, as the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasi-neutral coexistence scenario, with a line of fixed points involving different strands' equilibrium ratios depending on the initial conditions. Recent research into the quasi-neutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alter the mean-field scenario, and one of the two species outcompetes the other. In this article, we study this phenomenon for viral RNA replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNAs, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication. es_ES
dc.description.sponsorship The research leading to these results has received funding from 'la Caixa' Foundation. J.S. and T.A. have been partially funded by the CERCA Program of the Generalitat de Catalunya, MINECO grant no. MTM2015-71509-C2-1-R and by a MINECO grant awarded to the Barcelona Graduate School of Mathematics under the 'Maria de Maeztu' Program (grant no. MDM-2014-0445). T.A. is also supported by AGAUR (grant no. 2014SGR1307). S.F.E. has been supported by MINECO-FEDER grant no. BFU2015-65037-P and by Generalitat Valenciana grant no. PROMETEOII/2014/021. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society es_ES
dc.relation.ispartof Journal of The Royal Society Interface es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Complex systems es_ES
dc.subject Intracellular viral dynamics es_ES
dc.subject Noise-induced bistability es_ES
dc.subject Nonlinear dynamics es_ES
dc.subject Replication mode es_ES
dc.subject RNA viruses es_ES
dc.title Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1098/rsif.2018.0129 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-71509-C2-1-R/ES/MODELIZACION Y ANALISIS MULTIESCALA EN BIOLOGIA DE SISTEMAS Y BIOMEDICINA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MDM-2014-0445/ES/Barcelona Graduate School of Mathematics (BGSMath)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1307/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F021/ES/Comparative systems biology of host-virus interactions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sardanyes, J.; Arderiu, A.; Elena Fito, SF.; Alarcon, T. (2018). Noise-induced bistability in the quasi-neutral coexistence of viral RNAs under different replication modes. Journal of The Royal Society Interface. 15(142):1-10. https://doi.org/10.1098/rsif.2018.0129 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1098/rsif.2018.0129 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 142 es_ES
dc.identifier.pmid 29848592 es_ES
dc.identifier.pmcid PMC6000170 es_ES
dc.relation.pasarela S\382630 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona es_ES
dc.contributor.funder Agencia de Gestión de Ayudas Universitarias y de Investigación es_ES
dc.description.references Sardanyés, J., Solé, R. V., & Elena, S. F. (2009). Replication Mode and Landscape Topology Differentially Affect RNA Virus Mutational Load and Robustness. Journal of Virology, 83(23), 12579-12589. doi:10.1128/jvi.00767-09 es_ES
dc.description.references Thébaud, G., Chadœuf, J., Morelli, M. J., McCauley, J. W., & Haydon, D. T. (2009). The relationship between mutation frequency and replication strategy in positive-sense single-stranded RNA viruses. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 809-817. doi:10.1098/rspb.2009.1247 es_ES
dc.description.references Sardanyés, J., Martínez, F., Daròs, J.-A., & Elena, S. F. (2011). Dynamics of alternative modes of RNA replication for positive-sense RNA viruses. Journal of The Royal Society Interface, 9(69), 768-776. doi:10.1098/rsif.2011.0471 es_ES
dc.description.references Martínez, F., Sardanyés, J., Elena, S. F., & Daròs, J.-A. (2011). Dynamics of a Plant RNA Virus Intracellular Accumulation: Stamping Machine vs. Geometric Replication. Genetics, 188(3), 637-646. doi:10.1534/genetics.111.129114 es_ES
dc.description.references García-Villada, L., & Drake, J. W. (2012). The Three Faces of Riboviral Spontaneous Mutation: Spectrum, Mode of Genome Replication, and Mutation Rate. PLoS Genetics, 8(7), e1002832. doi:10.1371/journal.pgen.1002832 es_ES
dc.description.references Schulte, M. B., Draghi, J. A., Plotkin, J. B., & Andino, R. (2015). Experimentally guided models reveal replication principles that shape the mutation distribution of RNA viruses. eLife, 4. doi:10.7554/elife.03753 es_ES
dc.description.references Chao, L., Rang, C. U., & Wong, L. E. (2002). Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage φ6. Journal of Virology, 76(7), 3276-3281. doi:10.1128/jvi.76.7.3276-3281.2002 es_ES
dc.description.references Combe, M., Garijo, R., Geller, R., Cuevas, J. M., & Sanjuán, R. (2015). Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units. Cell Host & Microbe, 18(4), 424-432. doi:10.1016/j.chom.2015.09.009 es_ES
dc.description.references Schulte, M. B., & Andino, R. (2014). Single-Cell Analysis Uncovers Extensive Biological Noise in Poliovirus Replication. Journal of Virology, 88(11), 6205-6212. doi:10.1128/jvi.03539-13 es_ES
dc.description.references Gutiérrez, S., Michalakis, Y., & Blanc, S. (2012). Virus population bottlenecks during within-host progression and host-to-host transmission. Current Opinion in Virology, 2(5), 546-555. doi:10.1016/j.coviro.2012.08.001 es_ES
dc.description.references Romero-Brey, I., & Bartenschlager, R. (2016). Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses, 8(6), 160. doi:10.3390/v8060160 es_ES
dc.description.references Lin, Y. T., Kim, H., & Doering, C. R. (2012). Features of Fast Living: On the Weak Selection for Longevity in Degenerate Birth-Death Processes. Journal of Statistical Physics, 148(4), 647-663. doi:10.1007/s10955-012-0479-9 es_ES
dc.description.references Kogan, O., Khasin, M., Meerson, B., Schneider, D., & Myers, C. R. (2014). Two-strain competition in quasineutral stochastic disease dynamics. Physical Review E, 90(4). doi:10.1103/physreve.90.042149 es_ES
dc.description.references Hirsch, M. W., Pugh, C. C., & Shub, M. (1977). Invariant Manifolds. Lecture Notes in Mathematics. doi:10.1007/bfb0092042 es_ES
dc.description.references Kurtz, T. G. (1981). The Central Limit Theorem for Markov Chains. The Annals of Probability, 9(4), 557-560. doi:10.1214/aop/1176994361 es_ES
dc.description.references Kang, H.-W., Kurtz, T. G., & Popovic, L. (2014). Central limit theorems and diffusion approximations for multiscale Markov chain models. The Annals of Applied Probability, 24(2), 721-759. doi:10.1214/13-aap934 es_ES
dc.description.references Anderson, D. F., & Kurtz, T. G. (2015). Stochastic Analysis of Biochemical Systems. doi:10.1007/978-3-319-16895-1 es_ES
dc.description.references Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434. doi:10.1016/0021-9991(76)90041-3 es_ES
dc.description.references Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361. doi:10.1021/j100540a008 es_ES
dc.description.references Luria, S. E. (1951). THE FREQUENCY DISTRIBUTION OF SPONTANEOUS BACTERIOPHAGE MUTANTS AS EVIDENCE FOR THE EXPONENTIAL RATE OF PHAGE REPRODUCTION. Cold Spring Harbor Symposia on Quantitative Biology, 16(0), 463-470. doi:10.1101/sqb.1951.016.01.033 es_ES
dc.description.references Sardanyés, J. (2014). Viral RNA Replication Modes: Evolutionary and Dynamical Implications. Extended Abstracts Spring 2013, 115-119. doi:10.1007/978-3-319-08138-0_21 es_ES
dc.description.references Sardanyés, J., & Elena, S. F. (2011). Quasispecies Spatial Models for RNA Viruses with Different Replication Modes and Infection Strategies. PLoS ONE, 6(9), e24884. doi:10.1371/journal.pone.0024884 es_ES
dc.description.references Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70(1), 223-287. doi:10.1103/revmodphys.70.223 es_ES
dc.description.references Van den Broeck, C., Parrondo, J. M. R., & Toral, R. (1994). Noise-Induced Nonequilibrium Phase Transition. Physical Review Letters, 73(25), 3395-3398. doi:10.1103/physrevlett.73.3395 es_ES
dc.description.references Graham, R., & Schenzle, A. (1982). Stabilization by multiplicative noise. Physical Review A, 26(3), 1676-1685. doi:10.1103/physreva.26.1676 es_ES
dc.description.references Lücke, M., & Schank, F. (1985). Response to Parametric Modulation near an Instability. Physical Review Letters, 54(14), 1465-1468. doi:10.1103/physrevlett.54.1465 es_ES
dc.description.references Ochab-Marcinek, A., & Gudowska-Nowak, E. (2004). Population growth and control in stochastic models of cancer development. Physica A: Statistical Mechanics and its Applications, 343, 557-572. doi:10.1016/j.physa.2004.06.071 es_ES
dc.description.references Fiasconaro, A., Spagnolo, B., & Boccaletti, S. (2005). Signatures of noise-enhanced stability in metastable states. Physical Review E, 72(6). doi:10.1103/physreve.72.061110 es_ES
dc.description.references Togashi, Y., & Kaneko, K. (2001). Transitions Induced by the Discreteness of Molecules in a Small Autocatalytic System. Physical Review Letters, 86(11), 2459-2462. doi:10.1103/physrevlett.86.2459 es_ES
dc.description.references Biancalani, T., Dyson, L., & McKane, A. J. (2014). Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies. Physical Review Letters, 112(3). doi:10.1103/physrevlett.112.038101 es_ES
dc.description.references To, T.-L., & Maheshri, N. (2010). Noise Can Induce Bimodality in Positive Transcriptional Feedback Loops Without Bistability. Science, 327(5969), 1142-1145. doi:10.1126/science.1178962 es_ES
dc.description.references Sardanyés, J., & Alarcón, T. (2018). Noise-induced bistability in the fate of cancer phenotypic quasispecies: a bit-strings approach. Scientific Reports, 8(1). doi:10.1038/s41598-018-19552-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem