- -

Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria

Mostrar el registro completo del ítem

Vila, C.; Ayabaca-Sarria, C.; Díaz-Campoverde, C.; Calle, O. (2019). Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria. Sustainability. 11(17):1-17. https://doi.org/10.3390/su11174786

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147995

Ficheros en el ítem

Metadatos del ítem

Título: Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria
Autor: Vila, C. Ayabaca-Sarria, Cesar Díaz-Campoverde, Carlos Calle, Orlando
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] While the world is moving towards achieving sustainable development goals for responsible production and consumption, there is a need for metrics deployment for lower practical levels. From a manufacturing perspective, ...[+]
Palabras clave: Green manufacturing , Turning operations , Sustainability metrics , Surface integrity , Machining parameters optimization
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11174786
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11174786
Código del Proyecto:
info:eu-repo/grantAgreement/EPN//PIS 16-15/
Agradecimientos:
This research was funded by Escuela Politecnica Nacional (Ecuador) Research Project: PIS 16-15, Universitat Politecnica de Valencia UPV (Spain) and Carolina Foundation (Spanish Government Scholarships) call 2017
Tipo: Artículo

References

Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6

Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002

Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065 [+]
Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6

Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002

Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065

Kishawy, H., Hegab, H., & Saad, E. (2018). Design for Sustainable Manufacturing: Approach, Implementation, and Assessment. Sustainability, 10(10), 3604. doi:10.3390/su10103604

Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024

Cioca, L.-I., Breaz, R.-E., & Racz, S.-G. (2019). Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems. Sustainability, 11(2), 315. doi:10.3390/su11020315

Kluczek, A. (2017). Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes. Sustainability, 9(1), 88. doi:10.3390/su9010088

(2018). Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation. Sustainability, 10(3), 852. doi:10.3390/su10030852

Leskovar, P., & Peklenik, J. (1982). Influences Affecting Surface Integrity in the Cutting Process. CIRP Annals, 31(1), 447-450. doi:10.1016/s0007-8506(07)63345-9

Lalwani, D. I., Mehta, N. K., & Jain, P. K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206(1-3), 167-179. doi:10.1016/j.jmatprotec.2007.12.018

Sasahara, H. (2005). The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture, 45(2), 131-136. doi:10.1016/j.ijmachtools.2004.08.002

Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006

Pan, Z., Feng, Y., & Liang, S. Y. (2017). Material microstructure affected machining: a review. Manufacturing Review, 4, 5. doi:10.1051/mfreview/2017004

Wang, F., Zhao, J., Li, A., & Zhang, H. (2014). Effects of cutting conditions on microhardness and microstructure in high-speed milling of H13 tool steel. The International Journal of Advanced Manufacturing Technology, 73(1-4), 137-146. doi:10.1007/s00170-014-5812-9

Nagendhra, S., Rami reddy, A. S., & Preetham Kumar, G. V. (2018). Workability Study on Austempered AISI 1018. IOP Conference Series: Materials Science and Engineering, 376, 012049. doi:10.1088/1757-899x/376/1/012049

Mohsan, A. U. H., Liu, Z., Ren, X., & Liu, W. (2018). Influences of cutting fluid conditions and cutting parameters on surface integrity of Inconel 718 under high-pressure jet-assisted machining (HPJAM). Lubrication Science, 30(6), 269-284. doi:10.1002/ls.1418

Hwang, Y.-K., Lee, C.-M., & Park, S.-H. (2009). Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. International Journal of Precision Engineering and Manufacturing, 10(3), 65-73. doi:10.1007/s12541-009-0049-5

Yang, S., Talekar, T., Sulthan, M. A., & Zhao, Y. F. (2017). A Generic Sustainability Assessment Model towards Consolidated Parts Fabricated by Additive Manufacturing Process. Procedia Manufacturing, 10, 831-844. doi:10.1016/j.promfg.2017.07.086

Lu, L., Sun, J., Han, X., & Xiong, Q. (2016). Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process. Metals, 6(5), 99. doi:10.3390/met6050099

Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088

Yue, C., Gao, H., Liu, X., & Liang, S. (2018). Part Functionality Alterations Induced by Changes of Surface Integrity in Metal Milling Process: A Review. Applied Sciences, 8(12), 2550. doi:10.3390/app8122550

Pawade, R. S., Joshi, S. S., & Brahmankar, P. K. (2008). Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 48(1), 15-28. doi:10.1016/j.ijmachtools.2007.08.004

Bordin, A., Bruschi, S., & Ghiotti, A. (2014). The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy. Procedia CIRP, 13, 219-224. doi:10.1016/j.procir.2014.04.038

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem