Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6
Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002
Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065
[+]
Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6
Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002
Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065
Kishawy, H., Hegab, H., & Saad, E. (2018). Design for Sustainable Manufacturing: Approach, Implementation, and Assessment. Sustainability, 10(10), 3604. doi:10.3390/su10103604
Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024
Cioca, L.-I., Breaz, R.-E., & Racz, S.-G. (2019). Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems. Sustainability, 11(2), 315. doi:10.3390/su11020315
Kluczek, A. (2017). Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes. Sustainability, 9(1), 88. doi:10.3390/su9010088
(2018). Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation. Sustainability, 10(3), 852. doi:10.3390/su10030852
Leskovar, P., & Peklenik, J. (1982). Influences Affecting Surface Integrity in the Cutting Process. CIRP Annals, 31(1), 447-450. doi:10.1016/s0007-8506(07)63345-9
Lalwani, D. I., Mehta, N. K., & Jain, P. K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206(1-3), 167-179. doi:10.1016/j.jmatprotec.2007.12.018
Sasahara, H. (2005). The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture, 45(2), 131-136. doi:10.1016/j.ijmachtools.2004.08.002
Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006
Pan, Z., Feng, Y., & Liang, S. Y. (2017). Material microstructure affected machining: a review. Manufacturing Review, 4, 5. doi:10.1051/mfreview/2017004
Wang, F., Zhao, J., Li, A., & Zhang, H. (2014). Effects of cutting conditions on microhardness and microstructure in high-speed milling of H13 tool steel. The International Journal of Advanced Manufacturing Technology, 73(1-4), 137-146. doi:10.1007/s00170-014-5812-9
Nagendhra, S., Rami reddy, A. S., & Preetham Kumar, G. V. (2018). Workability Study on Austempered AISI 1018. IOP Conference Series: Materials Science and Engineering, 376, 012049. doi:10.1088/1757-899x/376/1/012049
Mohsan, A. U. H., Liu, Z., Ren, X., & Liu, W. (2018). Influences of cutting fluid conditions and cutting parameters on surface integrity of Inconel 718 under high-pressure jet-assisted machining (HPJAM). Lubrication Science, 30(6), 269-284. doi:10.1002/ls.1418
Hwang, Y.-K., Lee, C.-M., & Park, S.-H. (2009). Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. International Journal of Precision Engineering and Manufacturing, 10(3), 65-73. doi:10.1007/s12541-009-0049-5
Yang, S., Talekar, T., Sulthan, M. A., & Zhao, Y. F. (2017). A Generic Sustainability Assessment Model towards Consolidated Parts Fabricated by Additive Manufacturing Process. Procedia Manufacturing, 10, 831-844. doi:10.1016/j.promfg.2017.07.086
Lu, L., Sun, J., Han, X., & Xiong, Q. (2016). Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process. Metals, 6(5), 99. doi:10.3390/met6050099
Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088
Yue, C., Gao, H., Liu, X., & Liang, S. (2018). Part Functionality Alterations Induced by Changes of Surface Integrity in Metal Milling Process: A Review. Applied Sciences, 8(12), 2550. doi:10.3390/app8122550
Pawade, R. S., Joshi, S. S., & Brahmankar, P. K. (2008). Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 48(1), 15-28. doi:10.1016/j.ijmachtools.2007.08.004
Bordin, A., Bruschi, S., & Ghiotti, A. (2014). The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy. Procedia CIRP, 13, 219-224. doi:10.1016/j.procir.2014.04.038
[-]