Mostrar el registro sencillo del ítem
dc.contributor.author | Vila, C. | es_ES |
dc.contributor.author | Ayabaca-Sarria, Cesar | es_ES |
dc.contributor.author | Díaz-Campoverde, Carlos | es_ES |
dc.contributor.author | Calle, Orlando | es_ES |
dc.date.accessioned | 2020-07-15T03:31:58Z | |
dc.date.available | 2020-07-15T03:31:58Z | |
dc.date.issued | 2019-09-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/147995 | |
dc.description.abstract | [EN] While the world is moving towards achieving sustainable development goals for responsible production and consumption, there is a need for metrics deployment for lower practical levels. From a manufacturing perspective, definitions of sustainability indicators are required for industrial processes and operations. These metrics encourage the evaluation of manufactured parts and whether they meet the quality requirements in both a qualitative and quantitative way. The present contribution proposes a framework for defining a structured set of metrics customizable for operations in different manufacturing technologies. In order to validate the proposal, an experimental data analysis of turning operations was completed and the surface integrity was defined as the control feature. The selected material was AISI 1018 and the main process parameters were controlled in order to identify their influence¿not only in the final mechanical quality of the part, but also in the sustainability indicators. To achieve this goal, a set of experiments was performed wherein some of the fundamental machining parameter values were fixed, while other key parameters were modified. The results obtained helped to determine the criteria for predicting the quality of the turning operation when the effects are not readily evident in visual or dimensional inspections, as well as in evaluating the environmental impact that guarantees optimal part manufacturing | es_ES |
dc.description.sponsorship | This research was funded by Escuela Politecnica Nacional (Ecuador) Research Project: PIS 16-15, Universitat Politecnica de Valencia UPV (Spain) and Carolina Foundation (Spanish Government Scholarships) call 2017 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sustainability | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Green manufacturing | es_ES |
dc.subject | Turning operations | es_ES |
dc.subject | Sustainability metrics | es_ES |
dc.subject | Surface integrity | es_ES |
dc.subject | Machining parameters optimization | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/su11174786 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EPN//PIS 16-15/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Vila, C.; Ayabaca-Sarria, C.; Díaz-Campoverde, C.; Calle, O. (2019). Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria. Sustainability. 11(17):1-17. https://doi.org/10.3390/su11174786 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/su11174786 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 17 | es_ES |
dc.identifier.eissn | 2071-1050 | es_ES |
dc.relation.pasarela | S\393284 | es_ES |
dc.contributor.funder | Fundación Carolina | es_ES |
dc.contributor.funder | Universitat de València | es_ES |
dc.contributor.funder | Escuela Politécnica Nacional, Ecuador | es_ES |
dc.description.references | Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6 | es_ES |
dc.description.references | Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002 | es_ES |
dc.description.references | Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065 | es_ES |
dc.description.references | Kishawy, H., Hegab, H., & Saad, E. (2018). Design for Sustainable Manufacturing: Approach, Implementation, and Assessment. Sustainability, 10(10), 3604. doi:10.3390/su10103604 | es_ES |
dc.description.references | Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024 | es_ES |
dc.description.references | Cioca, L.-I., Breaz, R.-E., & Racz, S.-G. (2019). Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems. Sustainability, 11(2), 315. doi:10.3390/su11020315 | es_ES |
dc.description.references | Kluczek, A. (2017). Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes. Sustainability, 9(1), 88. doi:10.3390/su9010088 | es_ES |
dc.description.references | (2018). Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation. Sustainability, 10(3), 852. doi:10.3390/su10030852 | es_ES |
dc.description.references | Leskovar, P., & Peklenik, J. (1982). Influences Affecting Surface Integrity in the Cutting Process. CIRP Annals, 31(1), 447-450. doi:10.1016/s0007-8506(07)63345-9 | es_ES |
dc.description.references | Lalwani, D. I., Mehta, N. K., & Jain, P. K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206(1-3), 167-179. doi:10.1016/j.jmatprotec.2007.12.018 | es_ES |
dc.description.references | Sasahara, H. (2005). The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture, 45(2), 131-136. doi:10.1016/j.ijmachtools.2004.08.002 | es_ES |
dc.description.references | Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006 | es_ES |
dc.description.references | Pan, Z., Feng, Y., & Liang, S. Y. (2017). Material microstructure affected machining: a review. Manufacturing Review, 4, 5. doi:10.1051/mfreview/2017004 | es_ES |
dc.description.references | Wang, F., Zhao, J., Li, A., & Zhang, H. (2014). Effects of cutting conditions on microhardness and microstructure in high-speed milling of H13 tool steel. The International Journal of Advanced Manufacturing Technology, 73(1-4), 137-146. doi:10.1007/s00170-014-5812-9 | es_ES |
dc.description.references | Nagendhra, S., Rami reddy, A. S., & Preetham Kumar, G. V. (2018). Workability Study on Austempered AISI 1018. IOP Conference Series: Materials Science and Engineering, 376, 012049. doi:10.1088/1757-899x/376/1/012049 | es_ES |
dc.description.references | Mohsan, A. U. H., Liu, Z., Ren, X., & Liu, W. (2018). Influences of cutting fluid conditions and cutting parameters on surface integrity of Inconel 718 under high-pressure jet-assisted machining (HPJAM). Lubrication Science, 30(6), 269-284. doi:10.1002/ls.1418 | es_ES |
dc.description.references | Hwang, Y.-K., Lee, C.-M., & Park, S.-H. (2009). Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. International Journal of Precision Engineering and Manufacturing, 10(3), 65-73. doi:10.1007/s12541-009-0049-5 | es_ES |
dc.description.references | Yang, S., Talekar, T., Sulthan, M. A., & Zhao, Y. F. (2017). A Generic Sustainability Assessment Model towards Consolidated Parts Fabricated by Additive Manufacturing Process. Procedia Manufacturing, 10, 831-844. doi:10.1016/j.promfg.2017.07.086 | es_ES |
dc.description.references | Lu, L., Sun, J., Han, X., & Xiong, Q. (2016). Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process. Metals, 6(5), 99. doi:10.3390/met6050099 | es_ES |
dc.description.references | Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088 | es_ES |
dc.description.references | Yue, C., Gao, H., Liu, X., & Liang, S. (2018). Part Functionality Alterations Induced by Changes of Surface Integrity in Metal Milling Process: A Review. Applied Sciences, 8(12), 2550. doi:10.3390/app8122550 | es_ES |
dc.description.references | Pawade, R. S., Joshi, S. S., & Brahmankar, P. K. (2008). Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 48(1), 15-28. doi:10.1016/j.ijmachtools.2007.08.004 | es_ES |
dc.description.references | Bordin, A., Bruschi, S., & Ghiotti, A. (2014). The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy. Procedia CIRP, 13, 219-224. doi:10.1016/j.procir.2014.04.038 | es_ES |