- -

Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vila, C. es_ES
dc.contributor.author Ayabaca-Sarria, Cesar es_ES
dc.contributor.author Díaz-Campoverde, Carlos es_ES
dc.contributor.author Calle, Orlando es_ES
dc.date.accessioned 2020-07-15T03:31:58Z
dc.date.available 2020-07-15T03:31:58Z
dc.date.issued 2019-09-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147995
dc.description.abstract [EN] While the world is moving towards achieving sustainable development goals for responsible production and consumption, there is a need for metrics deployment for lower practical levels. From a manufacturing perspective, definitions of sustainability indicators are required for industrial processes and operations. These metrics encourage the evaluation of manufactured parts and whether they meet the quality requirements in both a qualitative and quantitative way. The present contribution proposes a framework for defining a structured set of metrics customizable for operations in different manufacturing technologies. In order to validate the proposal, an experimental data analysis of turning operations was completed and the surface integrity was defined as the control feature. The selected material was AISI 1018 and the main process parameters were controlled in order to identify their influence¿not only in the final mechanical quality of the part, but also in the sustainability indicators. To achieve this goal, a set of experiments was performed wherein some of the fundamental machining parameter values were fixed, while other key parameters were modified. The results obtained helped to determine the criteria for predicting the quality of the turning operation when the effects are not readily evident in visual or dimensional inspections, as well as in evaluating the environmental impact that guarantees optimal part manufacturing es_ES
dc.description.sponsorship This research was funded by Escuela Politecnica Nacional (Ecuador) Research Project: PIS 16-15, Universitat Politecnica de Valencia UPV (Spain) and Carolina Foundation (Spanish Government Scholarships) call 2017 es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Green manufacturing es_ES
dc.subject Turning operations es_ES
dc.subject Sustainability metrics es_ES
dc.subject Surface integrity es_ES
dc.subject Machining parameters optimization es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11174786 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EPN//PIS 16-15/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Vila, C.; Ayabaca-Sarria, C.; Díaz-Campoverde, C.; Calle, O. (2019). Sustainability Analysis of AISI 1018 Turning Operations under Surface Integrity Criteria. Sustainability. 11(17):1-17. https://doi.org/10.3390/su11174786 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11174786 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 17 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\393284 es_ES
dc.contributor.funder Fundación Carolina es_ES
dc.contributor.funder Universitat de València es_ES
dc.contributor.funder Escuela Politécnica Nacional, Ecuador es_ES
dc.description.references Davim, J. P. (Ed.). (2017). Sustainable Machining. Materials Forming, Machining and Tribology. doi:10.1007/978-3-319-51961-6 es_ES
dc.description.references Jawahir, I. S., Brinksmeier, E., M’Saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., … Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP Annals, 60(2), 603-626. doi:10.1016/j.cirp.2011.05.002 es_ES
dc.description.references Singh, K., & Sultan, I. (2018). A Computer-Aided Sustainable Modelling and Optimization Analysis of CNC Milling and Turning Processes. Journal of Manufacturing and Materials Processing, 2(4), 65. doi:10.3390/jmmp2040065 es_ES
dc.description.references Kishawy, H., Hegab, H., & Saad, E. (2018). Design for Sustainable Manufacturing: Approach, Implementation, and Assessment. Sustainability, 10(10), 3604. doi:10.3390/su10103604 es_ES
dc.description.references Bhanot, N., Rao, P. V., & Deshmukh, S. G. (2016). An Assessment of Sustainability for Turning Process in an Automobile Firm. Procedia CIRP, 48, 538-543. doi:10.1016/j.procir.2016.03.024 es_ES
dc.description.references Cioca, L.-I., Breaz, R.-E., & Racz, S.-G. (2019). Reducing the Risks during the Purchase of Five-Axis CNC Machining Centers Using AHP Method and Fuzzy Systems. Sustainability, 11(2), 315. doi:10.3390/su11020315 es_ES
dc.description.references Kluczek, A. (2017). Quick Green Scan: A Methodology for Improving Green Performance in Terms of Manufacturing Processes. Sustainability, 9(1), 88. doi:10.3390/su9010088 es_ES
dc.description.references (2018). Identification and Alignment of the Social Aspects of Sustainable Manufacturing with the Theory of Motivation. Sustainability, 10(3), 852. doi:10.3390/su10030852 es_ES
dc.description.references Leskovar, P., & Peklenik, J. (1982). Influences Affecting Surface Integrity in the Cutting Process. CIRP Annals, 31(1), 447-450. doi:10.1016/s0007-8506(07)63345-9 es_ES
dc.description.references Lalwani, D. I., Mehta, N. K., & Jain, P. K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206(1-3), 167-179. doi:10.1016/j.jmatprotec.2007.12.018 es_ES
dc.description.references Sasahara, H. (2005). The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture, 45(2), 131-136. doi:10.1016/j.ijmachtools.2004.08.002 es_ES
dc.description.references Jayal, A. D., Badurdeen, F., Dillon, O. W., & Jawahir, I. S. (2010). Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144-152. doi:10.1016/j.cirpj.2010.03.006 es_ES
dc.description.references Pan, Z., Feng, Y., & Liang, S. Y. (2017). Material microstructure affected machining: a review. Manufacturing Review, 4, 5. doi:10.1051/mfreview/2017004 es_ES
dc.description.references Wang, F., Zhao, J., Li, A., & Zhang, H. (2014). Effects of cutting conditions on microhardness and microstructure in high-speed milling of H13 tool steel. The International Journal of Advanced Manufacturing Technology, 73(1-4), 137-146. doi:10.1007/s00170-014-5812-9 es_ES
dc.description.references Nagendhra, S., Rami reddy, A. S., & Preetham Kumar, G. V. (2018). Workability Study on Austempered AISI 1018. IOP Conference Series: Materials Science and Engineering, 376, 012049. doi:10.1088/1757-899x/376/1/012049 es_ES
dc.description.references Mohsan, A. U. H., Liu, Z., Ren, X., & Liu, W. (2018). Influences of cutting fluid conditions and cutting parameters on surface integrity of Inconel 718 under high-pressure jet-assisted machining (HPJAM). Lubrication Science, 30(6), 269-284. doi:10.1002/ls.1418 es_ES
dc.description.references Hwang, Y.-K., Lee, C.-M., & Park, S.-H. (2009). Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. International Journal of Precision Engineering and Manufacturing, 10(3), 65-73. doi:10.1007/s12541-009-0049-5 es_ES
dc.description.references Yang, S., Talekar, T., Sulthan, M. A., & Zhao, Y. F. (2017). A Generic Sustainability Assessment Model towards Consolidated Parts Fabricated by Additive Manufacturing Process. Procedia Manufacturing, 10, 831-844. doi:10.1016/j.promfg.2017.07.086 es_ES
dc.description.references Lu, L., Sun, J., Han, X., & Xiong, Q. (2016). Study on the Surface Integrity of a Thin-Walled Aluminum Alloy Structure after a Bilateral Slid Rolling Process. Metals, 6(5), 99. doi:10.3390/met6050099 es_ES
dc.description.references Gupta, M., Pruncu, C., Mia, M., Singh, G., Singh, S., Prakash, C., … Gill, H. (2018). Machinability Investigations of Inconel-800 Super Alloy under Sustainable Cooling Conditions. Materials, 11(11), 2088. doi:10.3390/ma11112088 es_ES
dc.description.references Yue, C., Gao, H., Liu, X., & Liang, S. (2018). Part Functionality Alterations Induced by Changes of Surface Integrity in Metal Milling Process: A Review. Applied Sciences, 8(12), 2550. doi:10.3390/app8122550 es_ES
dc.description.references Pawade, R. S., Joshi, S. S., & Brahmankar, P. K. (2008). Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. International Journal of Machine Tools and Manufacture, 48(1), 15-28. doi:10.1016/j.ijmachtools.2007.08.004 es_ES
dc.description.references Bordin, A., Bruschi, S., & Ghiotti, A. (2014). The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy. Procedia CIRP, 13, 219-224. doi:10.1016/j.procir.2014.04.038 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem