- -

Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prgomet, I. es_ES
dc.contributor.author Goncalves, Berta es_ES
dc.contributor.author Domínguez-Perles, Raúl es_ES
dc.contributor.author Pascual-Seva, Nuria es_ES
dc.contributor.author Barros, A.I.R.N.A. es_ES
dc.date.accessioned 2020-07-15T03:32:22Z
dc.date.available 2020-07-15T03:32:22Z
dc.date.issued 2017-10-20 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148004
dc.description.abstract [EN] Almond is characterized by its high nutritional value; although information reported so far mainly concerns edible kernel. Even though the nutritional and commercial relevance of the almond is restricted to almond meat; to date; increasing attention has been paid to other parts of this fruit (skin; shell; and hull); considered by-products that are scarcely characterized and exploited regarding their properties as valuable sources of bioactive compounds (mainly represented by phenolic acids and flavonoids). This lack of proper valorization procedures entails the continuation of the application of traditional procedures to almond residues that nowadays are mainly addressed to livestock feed and energy production. In this sense; data available on the physicochemical and phytochemical composition of almond meat and its related residues suggest promising applications; and allow one to envisage new uses as functional ingredients towards value-added foods and feeds; as well as a source of bioactive phytochemicals to be included in cosmetic formulations. This objective has prompted investigators working in the field to evaluate their functional properties and biological activity. This approach has provided interesting information concerning the capacity of polyphenolic extracts of almond by-products to prevent degenerative diseases linked to oxidative stress and inflammation in human tissues and cells; in the frame of diverse pathophysiological situations. Hence; this review deals with gathering data available in the scientific literature on the phytochemical composition and bioactivity of almond by-products as well as on their bioactivity so as to promote their functional application. es_ES
dc.description.sponsorship This work is supported by European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT-Portuguese Foundation for Science and Technology, under the project UID/AGR/04033/2013. The author Iva Prgomet acknowledges the financial support provided by the FCT- Portuguese Foundation for Science and Technology (SFRH/BD/52539/2014), under the Doctoral Programme "Agricultural Production Chains-From Fork to Farm" (PD/00122/2012). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Prunus dulcis es_ES
dc.subject By-products es_ES
dc.subject Phenolic compounds es_ES
dc.subject Biological activity es_ES
dc.subject Functional application es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules22101774 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/147341/PT/Centre for the Research and Technology of Agro-Environmental and Biological Sciences/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//POCI-01-0145-FEDER-006958/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F52539%2F2014/PT/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F00122%2F2012/PT/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Prgomet, I.; Goncalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A. (2017). Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules. 22(10):1-27. https://doi.org/10.3390/molecules22101774 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules22101774 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 27 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 29053616 es_ES
dc.identifier.pmcid PMC6151789 es_ES
dc.relation.pasarela S\344769 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.description.references Pirayesh, H., & Khazaeian, A. (2012). Using almond (Prunus amygdalus L.) shell as a bio-waste resource in wood based composite. Composites Part B: Engineering, 43(3), 1475-1479. doi:10.1016/j.compositesb.2011.06.008 es_ES
dc.description.references Takeoka, G., Dao, L., Teranishi, R., Wong, R., Flessa, S., Harden, L., & Edwards, R. (2000). Identification of Three Triterpenoids in Almond Hulls. Journal of Agricultural and Food Chemistry, 48(8), 3437-3439. doi:10.1021/jf9908289 es_ES
dc.description.references Özcan, M. M., Ünver, A., Erkan, E., & Arslan, D. (2011). Characteristics of some almond kernel and oils. Scientia Horticulturae, 127(3), 330-333. doi:10.1016/j.scienta.2010.10.027 es_ES
dc.description.references Wijeratne, S. S. K., Abou-Zaid, M. M., & Shahidi, F. (2006). Antioxidant Polyphenols in Almond and Its Coproducts. Journal of Agricultural and Food Chemistry, 54(2), 312-318. doi:10.1021/jf051692j es_ES
dc.description.references Sfahlan, A. J., Mahmoodzadeh, A., Hasanzadeh, A., Heidari, R., & Jamei, R. (2009). Antioxidants and antiradicals in almond hull and shell (Amygdalus communis L.) as a function of genotype. Food Chemistry, 115(2), 529-533. doi:10.1016/j.foodchem.2008.12.049 es_ES
dc.description.references Yada, S., Lapsley, K., & Huang, G. (2011). A review of composition studies of cultivated almonds: Macronutrients and micronutrients. Journal of Food Composition and Analysis, 24(4-5), 469-480. doi:10.1016/j.jfca.2011.01.007 es_ES
dc.description.references AMAROWICZ, R., TROSZYNSKA, A., & SHAHIDI, F. (2005). ANTIOXIDANT ACTIVITY OF ALMOND SEED EXTRACT AND ITS FRACTIONS. Journal of Food Lipids, 12(4), 344-358. doi:10.1111/j.1745-4522.2005.00029.x es_ES
dc.description.references Sabaté, J. (1999). Nut consumption, vegetarian diets, ischemic heart disease risk, and all-cause mortality: evidence from epidemiologic studies. The American Journal of Clinical Nutrition, 70(3), 500s-503s. doi:10.1093/ajcn/70.3.500s es_ES
dc.description.references Hyson, D. A., Schneeman, B. O., & Davis, P. A. (2002). Almonds and Almond Oil Have Similar Effects on Plasma Lipids and LDL Oxidation in Healthy Men and Women. The Journal of Nutrition, 132(4), 703-707. doi:10.1093/jn/132.4.703 es_ES
dc.description.references Sabaté, J., Haddad, E., Tanzman, J. S., Jambazian, P., & Rajaram, S. (2003). Serum lipid response to the graduated enrichment of a Step I diet with almonds: a randomized feeding trial. The American Journal of Clinical Nutrition, 77(6), 1379-1384. doi:10.1093/ajcn/77.6.1379 es_ES
dc.description.references Berryman, C. E., Preston, A. G., Karmally, W., Deckelbaum, R. J., & Kris-Etherton, P. M. (2011). Effects of almond consumption on the reduction of LDL-cholesterol: a discussion of potential mechanisms and future research directions. Nutrition Reviews, 69(4), 171-185. doi:10.1111/j.1753-4887.2011.00383.x es_ES
dc.description.references Grassby, T., Mandalari, G., Grundy, M. M.-L., Edwards, C. H., Bisignano, C., Trombetta, D., … Waldron, K. W. (2017). In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism. Journal of Functional Foods, 37, 263-271. doi:10.1016/j.jff.2017.07.046 es_ES
dc.description.references Becker, T. (2000). Consumer perception of fresh meat quality: a framework for analysis. British Food Journal, 102(3), 158-176. doi:10.1108/00070700010371707 es_ES
dc.description.references Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207-225. doi:10.1016/s0925-5214(98)00086-6 es_ES
dc.description.references Nanos, G. D., Kazantzis, I., Kefalas, P., Petrakis, C., & Stavroulakis, G. G. (2002). Irrigation and harvest time affect almond kernel quality and composition. Scientia Horticulturae, 96(1-4), 249-256. doi:10.1016/s0304-4238(02)00078-x es_ES
dc.description.references Sánchez-Bel, P., Egea, I., Martínez-Madrid, M. C., Flores, B., & Romojaro, F. (2008). Influence of Irrigation and Organic/Inorganic Fertilization on Chemical Quality of Almond (Prunus amygdaluscv. Guara). Journal of Agricultural and Food Chemistry, 56(21), 10056-10062. doi:10.1021/jf8012212 es_ES
dc.description.references Shahidi, F. (2006). Functional Foods: Their Role in Health Promotion and Disease Prevention. Journal of Food Science, 69(5), R146-R149. doi:10.1111/j.1365-2621.2004.tb10727.x es_ES
dc.description.references Blomhoff, R., Carlsen, M. H., Andersen, L. F., & Jacobs, D. R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(S2), S52-S60. doi:10.1017/bjn20061864 es_ES
dc.description.references Chen, C.-Y., Lapsley, K., & Blumberg, J. (2006). A nutrition and health perspective on almonds. Journal of the Science of Food and Agriculture, 86(14), 2245-2250. doi:10.1002/jsfa.2659 es_ES
dc.description.references Milbury, P. E., Chen, C.-Y., Dolnikowski, G. G., & Blumberg, J. B. (2006). Determination of Flavonoids and Phenolics and Their Distribution in Almonds. Journal of Agricultural and Food Chemistry, 54(14), 5027-5033. doi:10.1021/jf0603937 es_ES
dc.description.references Wijeratne, S. S. K., Amarowicz, R., & Shahidi, F. (2006). Antioxidant activity of almonds and their by-products in food model systems. Journal of the American Oil Chemists’ Society, 83(3), 223. doi:10.1007/s11746-006-1197-8 es_ES
dc.description.references Toles, C. A., Marshall, W. E., Johns, M. M., Wartelle, L. H., & McAloon, A. (2000). Acid-activated carbons from almond shells: physical, chemical and adsorptive properties and estimated cost of production. Bioresource Technology, 71(1), 87-92. doi:10.1016/s0960-8524(99)00029-2 es_ES
dc.description.references Mandalari, G., Faulks, R. M., Bisignano, C., Waldron, K. W., Narbad, A., & Wickham, M. S. J. (2010). In vitro evaluation of the prebiotic properties of almond skins (Amygdalus communisL.). FEMS Microbiology Letters, 304(2), 116-122. doi:10.1111/j.1574-6968.2010.01898.x es_ES
dc.description.references Chen, C.-Y., Milbury, P. E., Lapsley, K., & Blumberg, J. B. (2005). Flavonoids from Almond Skins Are Bioavailable and Act Synergistically with Vitamins C and E to Enhance Hamster and Human LDL Resistance to Oxidation. The Journal of Nutrition, 135(6), 1366-1373. doi:10.1093/jn/135.6.1366 es_ES
dc.description.references Monagas, M., Garrido, I., Lebrón-Aguilar, R., Bartolome, B., & Gómez-Cordovés, C. (2007). Almond (Prunus dulcis(Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. Journal of Agricultural and Food Chemistry, 55(21), 8498-8507. doi:10.1021/jf071780z es_ES
dc.description.references Monagas, M., Garrido, I., Lebrón-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., & Bartolomé, B. (2009). Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins. Journal of Agricultural and Food Chemistry, 57(22), 10590-10599. doi:10.1021/jf901391a es_ES
dc.description.references Mandalari, G., Tomaino, A., Arcoraci, T., Martorana, M., Turco, V. L., Cacciola, F., … Wickham, M. S. J. (2010). Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). Journal of Food Composition and Analysis, 23(2), 166-174. doi:10.1016/j.jfca.2009.08.015 es_ES
dc.description.references Ledbetter, C. A. (2008). Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product. Bioresource Technology, 99(13), 5567-5573. doi:10.1016/j.biortech.2007.10.059 es_ES
dc.description.references Homedes, J. M., Roura, E., Keim, N. L., & Brown, D. L. (1993). Almond hulls in swine diet reduce body fat. California Agriculture, 47(3), 27-28. doi:10.3733/ca.v047n03p27 es_ES
dc.description.references Sang, S., Lapsley, K., Rosen, R. T., & Ho, C.-T. (2002). New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalusBatsch). Journal of Agricultural and Food Chemistry, 50(3), 607-609. doi:10.1021/jf0110194 es_ES
dc.description.references Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls ( Prunus amygdalus ) and pine sawdust ( Pinus pinaster ). Food Chemistry, 85(2), 267-273. doi:10.1016/j.foodchem.2003.06.020 es_ES
dc.description.references Amico, V., Barresi, V., Condorelli, D., Spatafora, C., & Tringali, C. (2006). Antiproliferative Terpenoids from Almond Hulls (Prunus dulcis):  Identification and Structure−Activity Relationships. Journal of Agricultural and Food Chemistry, 54(3), 810-814. doi:10.1021/jf052812q es_ES
dc.description.references Rubilar, M., Pinelo, M., Shene, C., Sineiro, J., & Nuñez, M. J. (2007). Separation and HPLC-MS Identification of Phenolic Antioxidants from Agricultural Residues: Almond Hulls and Grape Pomace. Journal of Agricultural and Food Chemistry, 55(25), 10101-10109. doi:10.1021/jf0721996 es_ES
dc.description.references Barreira, J. C. M., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Pereira, J. A. (2010). Antioxidant Potential of Chestnut (Castanea sativa L.) and Almond (Prunus dulcis L.) By-products. Food Science and Technology International, 16(3), 209-216. doi:10.1177/1082013209353983 es_ES
dc.description.references Moure, A., Pazos, M., Medina, I., Domínguez, H., & Parajó, J. C. (2007). Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 101(1), 193-201. doi:10.1016/j.foodchem.2006.01.017 es_ES
dc.description.references Mandalari, G., Arcoraci, T., Martorana, M., Bisignano, C., Rizza, L., Bonina, F., … Tomaino, A. (2013). Antioxidant and Photoprotective Effects of Blanch Water, a Byproduct of the Almond Processing Industry. Molecules, 18(10), 12426-12440. doi:10.3390/molecules181012426 es_ES
dc.description.references Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504. doi:10.1016/s0031-9422(00)00235-1 es_ES
dc.description.references Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892. doi:10.1089/ars.2012.4581 es_ES
dc.description.references Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. doi:10.1093/ajcn/79.5.727 es_ES
dc.description.references Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00222 es_ES
dc.description.references Sevenet, T. (1996). Phytochemistry of medicinal plants. Biochimie, 78(4), 291-292. doi:10.1016/0300-9084(96)82199-7 es_ES
dc.description.references Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules, 15(12), 8813-8826. doi:10.3390/molecules15128813 es_ES
dc.description.references Robbins, R. J. (2003). Phenolic Acids in Foods:  An Overview of Analytical Methodology. Journal of Agricultural and Food Chemistry, 51(10), 2866-2887. doi:10.1021/jf026182t es_ES
dc.description.references Kornsteiner, M., Wagner, K.-H., & Elmadfa, I. (2006). Tocopherols and total phenolics in 10 different nut types. Food Chemistry, 98(2), 381-387. doi:10.1016/j.foodchem.2005.07.033 es_ES
dc.description.references Garrido, I., Monagas, M., Gómez-Cordovés, C., & Bartolomé, B. (2008). Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. Journal of Food Science, 73(2), C106-C115. doi:10.1111/j.1750-3841.2007.00637.x es_ES
dc.description.references Takeoka, G. R., & Dao, L. T. (2003). Antioxidant Constituents of Almond [Prunus dulcis(Mill.) D.A. Webb] Hulls. Journal of Agricultural and Food Chemistry, 51(2), 496-501. doi:10.1021/jf020660i es_ES
dc.description.references Arráez-Román, D., Fu, S., Sawalha, S. M. S., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2010). HPLC/CE-ESI-TOF-MS methods for the characterization of polyphenols in almond-skin extracts. ELECTROPHORESIS, 31(13), 2289-2296. doi:10.1002/elps.200900679 es_ES
dc.description.references Smeriglio, A., Mandalari, G., Bisignano, C., Filocamo, A., Barreca, D., Bellocco, E., & Trombetta, D. (2016). Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial byproducts. Industrial Crops and Products, 83, 283-293. doi:10.1016/j.indcrop.2015.11.089 es_ES
dc.description.references Bolling, B. W., Dolnikowski, G., Blumberg, J. B., & Oliver Chen, C. Y. (2009). Quantification of Almond Skin Polyphenols by Liquid Chromatography-Mass Spectrometry. Journal of Food Science, 74(4), C326-C332. doi:10.1111/j.1750-3841.2009.01133.x es_ES
dc.description.references Frison-Norrie, S., & Sporns, P. (2002). Identification and Quantification of Flavonol Glycosides in Almond Seedcoats Using MALDI-TOF MS. Journal of Agricultural and Food Chemistry, 50(10), 2782-2787. doi:10.1021/jf0115894 es_ES
dc.description.references Kordali, S., Cakir, A., Mavi, A., Kilic, H., & Yildirim, A. (2005). Screening of Chemical Composition and Antifungal and Antioxidant Activities of the Essential Oils from Three TurkishArtemisiaSpecies. Journal of Agricultural and Food Chemistry, 53(5), 1408-1416. doi:10.1021/jf048429n es_ES
dc.description.references Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412-422. doi:10.1007/s13197-011-0251-1 es_ES
dc.description.references Pisoschi, A. M., & Negulescu, G. P. (2012). Methods for Total Antioxidant Activity Determination: A Review. Biochemistry & Analytical Biochemistry, 01(01). doi:10.4172/2161-1009.1000106 es_ES
dc.description.references Chen, C.-Y. O., & Blumberg, J. B. (2008). In Vitro Activity of Almond Skin Polyphenols for Scavenging Free Radicals and Inducing Quinone Reductase. Journal of Agricultural and Food Chemistry, 56(12), 4427-4434. doi:10.1021/jf800061z es_ES
dc.description.references Bolling, B. W., Blumberg, J. B., & Oliver Chen, C.-Y. (2010). The influence of roasting, pasteurisation, and storage on the polyphenol content and antioxidant capacity of California almond skins. Food Chemistry, 123(4), 1040-1047. doi:10.1016/j.foodchem.2010.05.058 es_ES
dc.description.references Frison, S., & Sporns, P. (2002). Variation in the Flavonol Glycoside Composition of Almond Seedcoats As Determined by MALDI-TOF Mass Spectrometry. Journal of Agricultural and Food Chemistry, 50(23), 6818-6822. doi:10.1021/jf020661a es_ES
dc.description.references Bolling, B. W. (2017). Almond Polyphenols: Methods of Analysis, Contribution to Food Quality, and Health Promotion. Comprehensive Reviews in Food Science and Food Safety, 16(3), 346-368. doi:10.1111/1541-4337.12260 es_ES
dc.description.references Bartolomé, B., Monagas, M., Garrido, I., Gómez-Cordovés, C., Martín-Álvarez, P. J., Lebrón-Aguilar, R., … Andrés-Lacueva, C. (2010). Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Archives of Biochemistry and Biophysics, 501(1), 124-133. doi:10.1016/j.abb.2010.03.020 es_ES
dc.description.references Hughey, C. A., Janusziewicz, R., Minardi, C. S., Phung, J., Huffman, B. A., Reyes, L., … Prakash, A. (2012). Distribution of almond polyphenols in blanch water and skins as a function of blanching time and temperature. Food Chemistry, 131(4), 1165-1173. doi:10.1016/j.foodchem.2011.09.093 es_ES
dc.description.references Fisklements, M., & Barrett, D. M. (2014). Kinetics of almond skin separation as a function of blanching time and temperature. Journal of Food Engineering, 138, 11-16. doi:10.1016/j.jfoodeng.2014.03.012 es_ES
dc.description.references Ingelfinger, F. J. (1973). International Journal of Epidemiology. New England Journal of Medicine, 288(8), 418-418. doi:10.1056/nejm197302222880814 es_ES
dc.description.references González-Castejón, M., & Rodriguez-Casado, A. (2011). Dietary phytochemicals and their potential effects on obesity: A review. Pharmacological Research, 64(5), 438-455. doi:10.1016/j.phrs.2011.07.004 es_ES
dc.description.references Kakkar, S., & Bais, S. (2014). A Review on Protocatechuic Acid and Its Pharmacological Potential. ISRN Pharmacology, 2014, 1-9. doi:10.1155/2014/952943 es_ES
dc.description.references Mandalari, G., Bisignano, C., D’Arrigo, M., Ginestra, G., Arena, A., Tomaino, A., & Wickham, M. S. J. (2010). Antimicrobial potential of polyphenols extracted from almond skins. Letters in Applied Microbiology, no-no. doi:10.1111/j.1472-765x.2010.02862.x es_ES
dc.description.references Mandalari, G., Bisignano, C., Genovese, T., Mazzon, E., Wickham, M. S. J., Paterniti, I., & Cuzzocrea, S. (2011). Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. International Immunopharmacology, 11(8), 915-924. doi:10.1016/j.intimp.2011.02.003 es_ES
dc.description.references Liu, Z., Lin, X., Huang, G., Zhang, W., Rao, P., & Ni, L. (2014). Prebiotic effects of almonds and almond skins on intestinal microbiota in healthy adult humans. Anaerobe, 26, 1-6. doi:10.1016/j.anaerobe.2013.11.007 es_ES
dc.description.references Bisignano, C., Mandalari, G., Smeriglio, A., Trombetta, D., Pizzo, M., Pennisi, R., & Sciortino, M. (2017). Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses, 9(7), 178. doi:10.3390/v9070178 es_ES
dc.description.references Mandalari, G., Tomaino, A., Rich, G. T., Lo Curto, R., Arcoraci, T., Martorana, M., … Wickham, M. S. J. (2010). Polyphenol and nutrient release from skin of almonds during simulated human digestion. Food Chemistry, 122(4), 1083-1088. doi:10.1016/j.foodchem.2010.03.079 es_ES
dc.description.references Mandalari, G., Vardakou, M., Faulks, R., Bisignano, C., Martorana, M., Smeriglio, A., & Trombetta, D. (2016). Food Matrix Effects of Polyphenol Bioaccessibility from Almond Skin during Simulated Human Digestion. Nutrients, 8(9), 568. doi:10.3390/nu8090568 es_ES
dc.description.references Parkar, S. G., Stevenson, D. E., & Skinner, M. A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. International Journal of Food Microbiology, 124(3), 295-298. doi:10.1016/j.ijfoodmicro.2008.03.017 es_ES
dc.description.references Fadel, J. . (1999). Quantitative analyses of selected plant by-product feedstuffs, a global perspective. Animal Feed Science and Technology, 79(4), 255-268. doi:10.1016/s0377-8401(99)00031-0 es_ES
dc.description.references Renewable Energy Production from Almond Wastehttp://www.australianalmonds.com.au es_ES
dc.description.references Chalker-Scott, L. (2007). Impact of Mulches on Landscape Plants and the Environment — A Review. Journal of Environmental Horticulture, 25(4), 239-249. doi:10.24266/0738-2898-25.4.239 es_ES
dc.description.references López, R., Burgos, P., Hermoso, J. M., Hormaza, J. I., & González-Fernández, J. J. (2014). Long term changes in soil properties and enzyme activities after almond shell mulching in avocado organic production. Soil and Tillage Research, 143, 155-163. doi:10.1016/j.still.2014.06.004 es_ES
dc.description.references Urrestarazu, M., Martínez, G. A., & Salas, M. del C. (2005). Almond shell waste: possible local rockwool substitute in soilless crop culture. Scientia Horticulturae, 103(4), 453-460. doi:10.1016/j.scienta.2004.06.011 es_ES
dc.description.references Urrestarazu, M., Mazuela, P. C., & Martínez, G. A. (2008). Effect of Substrate Reutilization on Yield and Properties of Melon and Tomato Crops. Journal of Plant Nutrition, 31(11), 2031-2043. doi:10.1080/01904160802405420 es_ES
dc.description.references Valverde, M., Madrid, R., García, A. L., Del Amor, F. M., & Rincón, L. F. (2013). Use of almond shell and almond hull as substrates for sweet pepper cultivation. Effects on fruit yield and mineral content. Spanish Journal of Agricultural Research, 11(1), 164. doi:10.5424/sjar/2013111-3566 es_ES
dc.description.references Heschel, W., & Klose, E. (1995). On the suitability of agricultural by-products for the manufacture of granular activated carbon. Fuel, 74(12), 1786-1791. doi:10.1016/0016-2361(95)80009-7 es_ES
dc.description.references Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., & Nasir Ani, F. (2002). Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, 40(13), 2381-2386. doi:10.1016/s0008-6223(02)00118-5 es_ES
dc.description.references Urruzola, I., Robles, E., Serrano, L., & Labidi, J. (2014). Nanopaper from almond (Prunus dulcis) shell. Cellulose, 21(3), 1619-1629. doi:10.1007/s10570-014-0238-y es_ES
dc.description.references Erdem İşmal, Ö., Yıldırım, L., & Özdoğan, E. (2014). Use of almond shell extracts plus biomordants as effective textile dye. Journal of Cleaner Production, 70, 61-67. doi:10.1016/j.jclepro.2014.01.055 es_ES
dc.description.references Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68-87. doi:10.1016/j.tifs.2012.03.003 es_ES
dc.description.references Soto, M. L., Moure, A., Domínguez, H., & Parajó, J. C. (2011). Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 105(1), 1-27. doi:10.1016/j.jfoodeng.2011.02.010 es_ES
dc.description.references Liu, X., Tang, Y., Wei, S., Yu, H., Lv, H., & Ge, H. (2010). ISOLATION AND PURIFICATION OF PHENOLIC COMPOUNDS FROM MAGNOLIAE OFFICINALIS BY PREPARATIVE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. Journal of Liquid Chromatography & Related Technologies, 33(4), 431-440. doi:10.1080/10826070903574063 es_ES
dc.description.references Bailly, M. (2002). Production of organic acids by bipolar electrodialysis: realizations and perspectives. Desalination, 144(1-3), 157-162. doi:10.1016/s0011-9164(02)00305-3 es_ES
dc.description.references Munin, A., & Edwards-Lévy, F. (2011). Encapsulation of Natural Polyphenolic Compounds; a Review. Pharmaceutics, 3(4), 793-829. doi:10.3390/pharmaceutics3040793 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem