- -

Computing Matrix Trigonometric Functions with GPUs through Matlab

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing Matrix Trigonometric Functions with GPUs through Matlab

Mostrar el registro completo del ítem

Alonso-Jordá, P.; Peinado Pinilla, J.; Ibáñez González, JJ.; Sastre, J.; Defez Candel, E. (2019). Computing Matrix Trigonometric Functions with GPUs through Matlab. The Journal of Supercomputing. 75(3):1227-1240. https://doi.org/10.1007/s11227-018-2354-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148006

Ficheros en el ítem

Metadatos del ítem

Título: Computing Matrix Trigonometric Functions with GPUs through Matlab
Autor: Alonso-Jordá, Pedro Peinado Pinilla, Jesús Ibáñez González, Jacinto Javier Sastre, Jorge Defez Candel, Emilio
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] This paper presents an implementation of one of the most up-to-day algorithms proposed to compute the matrix trigonometric functions sine and cosine. The method used is based on Taylor series approximations which ...[+]
Palabras clave: Matrix trigonometric functions , Matrix cosine , Matrix sine , GPU computing , MATLAB , Mex MATLAB
Derechos de uso: Reserva de todos los derechos
Fuente:
The Journal of Supercomputing. (issn: 0920-8542 )
DOI: 10.1007/s11227-018-2354-1
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11227-018-2354-1
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-59294-P/ES/FUNCIONES DE MATRICES: CALCULO Y APLICACIONES/
info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/
Agradecimientos:
This work has been supported by Spanish Ministerio de Economia y Competitividad and the European Regional Development Fund (ERDF) Grants TIN2014-59294-P and TEC2015-67387-C4-1-R
Tipo: Artículo

References

Serbin SM (1979) Rational approximations of trigonometric matrices with application to second-order systems of differential equations. Appl Math Comput 5(1):75–92

Serbin Steven M, Blalock Sybil A (1980) An algorithm for computing the matrix cosine. SIAM J Sci Stat Comput 1(2):198–204

Hargreaves GI, Higham NJ (2005) Efficient algorithms for the matrix cosine and sine. Numer Algorithms 40:383–400 [+]
Serbin SM (1979) Rational approximations of trigonometric matrices with application to second-order systems of differential equations. Appl Math Comput 5(1):75–92

Serbin Steven M, Blalock Sybil A (1980) An algorithm for computing the matrix cosine. SIAM J Sci Stat Comput 1(2):198–204

Hargreaves GI, Higham NJ (2005) Efficient algorithms for the matrix cosine and sine. Numer Algorithms 40:383–400

Al-Mohy Awad H, Higham Nicholas J (2009) A new scaling and squaring algorithm for the matrix exponential. SIAM J Matrix Anal Appl 31(3):970–989

Defez E, Sastre J, Ibáñez Javier J, Ruiz Pedro A (2011) Computing matrix functions arising in engineering models with orthogonal matrix polynomials. Math Comput Model 57:1738–1743

Sastre J, Ibáñez J, Ruiz P, Defez E (2013) Efficient computation of the matrix cosine. Appl Math Comput 219:7575–7585

Al-Mohy Awad H, Higham Nicholas J, Relton Samuel D (2015) New algorithms for computing the matrix sine and cosine separately or simultaneously. SIAM J Sci Comput 37(1):A456–A487

Alonso P, Ibáñez J, Sastre J, Peinado J, Defez E (2017) Efficient and accurate algorithms for computing matrix trigonometric functions. J Comput Appl Math 309(1):325–332

CUBLAS library (2017) http://docs.nvidia.com/cuda/cublas/index.html . Accessed May 2017

Alonso Jordá P, Boratto M, Peinado Pinilla J, Ibáñez González JJ, Sastre Martínez J (2014) On the evaluation of matrix polynomials using several GPGPUs. Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/39615 . Accessed Sept 2017

Boratto Murilo, Alonso Pedro, Giménez Domingo, Lastovetsky Alexey L (2017) Automatic tuning to performance modelling of matrix polynomials on multicore and multi-gpu systems. J Supercomput 73(1):227–239

Alonso P, Peinado J, Ibáñez J, Sastre J, Defez E (2017) A fast implementation of matrix trigonometric functions sine and cosine. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), pp 51–55, Costa Ballena, Rota, Cadiz (Spain), July 4th–8th

Sastre Jorge, Ibáñez Javier, Alonso Pedro, Peinado Jesús, Defez Emilio (2017) Two algorithms for computing the matrix cosine function. Appl Math Comput 312:66–77

Paterson Michael S, Stockmeyer Larry J (1973) On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J Comput 2(1):60–66

Higham Nicholas J (2008) Functions of matrices: theory and computation. SIAM, Philadelphia

Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2011) Efficient orthogonal matrix polynomial based method for computing matrix exponential. Appl Math Comput 217:6451–6463

Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2015) Efficient scaling-squaring Taylor method for computing matrix exponential. SIAM J Sci Comput 37(1):A439–455

Higham NJ, Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J Matrix Anal Appl 21:1185–1201

Demmel JW (1987) A counterexample for two conjectures about stability. IEEE Trans Autom Control 32:340–343

Wright Thomas G (2002) EigTool library. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/ . Accessed May 2017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem