Mostrar el registro sencillo del ítem
dc.contributor.author | Alonso-Jordá, Pedro | es_ES |
dc.contributor.author | Peinado Pinilla, Jesús | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Sastre, Jorge | es_ES |
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.date.accessioned | 2020-07-15T03:32:28Z | |
dc.date.available | 2020-07-15T03:32:28Z | |
dc.date.issued | 2019-03 | es_ES |
dc.identifier.issn | 0920-8542 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148006 | |
dc.description.abstract | [EN] This paper presents an implementation of one of the most up-to-day algorithms proposed to compute the matrix trigonometric functions sine and cosine. The method used is based on Taylor series approximations which intensively uses matrix multiplications. To accelerate matrix products, our application can use from one to four NVIDIA GPUs by using the NVIDIA cublas and cublasXt libraries. The application, implemented in C++, can be used from the Matlab command line thanks to the mex files provided. We experimentally assess our implementation in modern and very high-performance NVIDIA GPUs. | es_ES |
dc.description.sponsorship | This work has been supported by Spanish Ministerio de Economia y Competitividad and the European Regional Development Fund (ERDF) Grants TIN2014-59294-P and TEC2015-67387-C4-1-R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | The Journal of Supercomputing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Matrix trigonometric functions | es_ES |
dc.subject | Matrix cosine | es_ES |
dc.subject | Matrix sine | es_ES |
dc.subject | GPU computing | es_ES |
dc.subject | MATLAB | es_ES |
dc.subject | Mex MATLAB | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Computing Matrix Trigonometric Functions with GPUs through Matlab | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11227-018-2354-1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2014-59294-P/ES/FUNCIONES DE MATRICES: CALCULO Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Alonso-Jordá, P.; Peinado Pinilla, J.; Ibáñez González, JJ.; Sastre, J.; Defez Candel, E. (2019). Computing Matrix Trigonometric Functions with GPUs through Matlab. The Journal of Supercomputing. 75(3):1227-1240. https://doi.org/10.1007/s11227-018-2354-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s11227-018-2354-1 | es_ES |
dc.description.upvformatpinicio | 1227 | es_ES |
dc.description.upvformatpfin | 1240 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 75 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\382169 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Serbin SM (1979) Rational approximations of trigonometric matrices with application to second-order systems of differential equations. Appl Math Comput 5(1):75–92 | es_ES |
dc.description.references | Serbin Steven M, Blalock Sybil A (1980) An algorithm for computing the matrix cosine. SIAM J Sci Stat Comput 1(2):198–204 | es_ES |
dc.description.references | Hargreaves GI, Higham NJ (2005) Efficient algorithms for the matrix cosine and sine. Numer Algorithms 40:383–400 | es_ES |
dc.description.references | Al-Mohy Awad H, Higham Nicholas J (2009) A new scaling and squaring algorithm for the matrix exponential. SIAM J Matrix Anal Appl 31(3):970–989 | es_ES |
dc.description.references | Defez E, Sastre J, Ibáñez Javier J, Ruiz Pedro A (2011) Computing matrix functions arising in engineering models with orthogonal matrix polynomials. Math Comput Model 57:1738–1743 | es_ES |
dc.description.references | Sastre J, Ibáñez J, Ruiz P, Defez E (2013) Efficient computation of the matrix cosine. Appl Math Comput 219:7575–7585 | es_ES |
dc.description.references | Al-Mohy Awad H, Higham Nicholas J, Relton Samuel D (2015) New algorithms for computing the matrix sine and cosine separately or simultaneously. SIAM J Sci Comput 37(1):A456–A487 | es_ES |
dc.description.references | Alonso P, Ibáñez J, Sastre J, Peinado J, Defez E (2017) Efficient and accurate algorithms for computing matrix trigonometric functions. J Comput Appl Math 309(1):325–332 | es_ES |
dc.description.references | CUBLAS library (2017) http://docs.nvidia.com/cuda/cublas/index.html . Accessed May 2017 | es_ES |
dc.description.references | Alonso Jordá P, Boratto M, Peinado Pinilla J, Ibáñez González JJ, Sastre Martínez J (2014) On the evaluation of matrix polynomials using several GPGPUs. Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/39615 . Accessed Sept 2017 | es_ES |
dc.description.references | Boratto Murilo, Alonso Pedro, Giménez Domingo, Lastovetsky Alexey L (2017) Automatic tuning to performance modelling of matrix polynomials on multicore and multi-gpu systems. J Supercomput 73(1):227–239 | es_ES |
dc.description.references | Alonso P, Peinado J, Ibáñez J, Sastre J, Defez E (2017) A fast implementation of matrix trigonometric functions sine and cosine. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), pp 51–55, Costa Ballena, Rota, Cadiz (Spain), July 4th–8th | es_ES |
dc.description.references | Sastre Jorge, Ibáñez Javier, Alonso Pedro, Peinado Jesús, Defez Emilio (2017) Two algorithms for computing the matrix cosine function. Appl Math Comput 312:66–77 | es_ES |
dc.description.references | Paterson Michael S, Stockmeyer Larry J (1973) On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J Comput 2(1):60–66 | es_ES |
dc.description.references | Higham Nicholas J (2008) Functions of matrices: theory and computation. SIAM, Philadelphia | es_ES |
dc.description.references | Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2011) Efficient orthogonal matrix polynomial based method for computing matrix exponential. Appl Math Comput 217:6451–6463 | es_ES |
dc.description.references | Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2015) Efficient scaling-squaring Taylor method for computing matrix exponential. SIAM J Sci Comput 37(1):A439–455 | es_ES |
dc.description.references | Higham NJ, Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J Matrix Anal Appl 21:1185–1201 | es_ES |
dc.description.references | Demmel JW (1987) A counterexample for two conjectures about stability. IEEE Trans Autom Control 32:340–343 | es_ES |
dc.description.references | Wright Thomas G (2002) EigTool library. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/ . Accessed May 2017 | es_ES |