- -

Computing Matrix Trigonometric Functions with GPUs through Matlab

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computing Matrix Trigonometric Functions with GPUs through Matlab

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alonso-Jordá, Pedro es_ES
dc.contributor.author Peinado Pinilla, Jesús es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Sastre, Jorge es_ES
dc.contributor.author Defez Candel, Emilio es_ES
dc.date.accessioned 2020-07-15T03:32:28Z
dc.date.available 2020-07-15T03:32:28Z
dc.date.issued 2019-03 es_ES
dc.identifier.issn 0920-8542 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148006
dc.description.abstract [EN] This paper presents an implementation of one of the most up-to-day algorithms proposed to compute the matrix trigonometric functions sine and cosine. The method used is based on Taylor series approximations which intensively uses matrix multiplications. To accelerate matrix products, our application can use from one to four NVIDIA GPUs by using the NVIDIA cublas and cublasXt libraries. The application, implemented in C++, can be used from the Matlab command line thanks to the mex files provided. We experimentally assess our implementation in modern and very high-performance NVIDIA GPUs. es_ES
dc.description.sponsorship This work has been supported by Spanish Ministerio de Economia y Competitividad and the European Regional Development Fund (ERDF) Grants TIN2014-59294-P and TEC2015-67387-C4-1-R es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The Journal of Supercomputing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Matrix trigonometric functions es_ES
dc.subject Matrix cosine es_ES
dc.subject Matrix sine es_ES
dc.subject GPU computing es_ES
dc.subject MATLAB es_ES
dc.subject Mex MATLAB es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Computing Matrix Trigonometric Functions with GPUs through Matlab es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11227-018-2354-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-59294-P/ES/FUNCIONES DE MATRICES: CALCULO Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Alonso-Jordá, P.; Peinado Pinilla, J.; Ibáñez González, JJ.; Sastre, J.; Defez Candel, E. (2019). Computing Matrix Trigonometric Functions with GPUs through Matlab. The Journal of Supercomputing. 75(3):1227-1240. https://doi.org/10.1007/s11227-018-2354-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11227-018-2354-1 es_ES
dc.description.upvformatpinicio 1227 es_ES
dc.description.upvformatpfin 1240 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 75 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\382169 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Serbin SM (1979) Rational approximations of trigonometric matrices with application to second-order systems of differential equations. Appl Math Comput 5(1):75–92 es_ES
dc.description.references Serbin Steven M, Blalock Sybil A (1980) An algorithm for computing the matrix cosine. SIAM J Sci Stat Comput 1(2):198–204 es_ES
dc.description.references Hargreaves GI, Higham NJ (2005) Efficient algorithms for the matrix cosine and sine. Numer Algorithms 40:383–400 es_ES
dc.description.references Al-Mohy Awad H, Higham Nicholas J (2009) A new scaling and squaring algorithm for the matrix exponential. SIAM J Matrix Anal Appl 31(3):970–989 es_ES
dc.description.references Defez E, Sastre J, Ibáñez Javier J, Ruiz Pedro A (2011) Computing matrix functions arising in engineering models with orthogonal matrix polynomials. Math Comput Model 57:1738–1743 es_ES
dc.description.references Sastre J, Ibáñez J, Ruiz P, Defez E (2013) Efficient computation of the matrix cosine. Appl Math Comput 219:7575–7585 es_ES
dc.description.references Al-Mohy Awad H, Higham Nicholas J, Relton Samuel D (2015) New algorithms for computing the matrix sine and cosine separately or simultaneously. SIAM J Sci Comput 37(1):A456–A487 es_ES
dc.description.references Alonso P, Ibáñez J, Sastre J, Peinado J, Defez E (2017) Efficient and accurate algorithms for computing matrix trigonometric functions. J Comput Appl Math 309(1):325–332 es_ES
dc.description.references CUBLAS library (2017) http://docs.nvidia.com/cuda/cublas/index.html . Accessed May 2017 es_ES
dc.description.references Alonso Jordá P, Boratto M, Peinado Pinilla J, Ibáñez González JJ, Sastre Martínez J (2014) On the evaluation of matrix polynomials using several GPGPUs. Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/39615 . Accessed Sept 2017 es_ES
dc.description.references Boratto Murilo, Alonso Pedro, Giménez Domingo, Lastovetsky Alexey L (2017) Automatic tuning to performance modelling of matrix polynomials on multicore and multi-gpu systems. J Supercomput 73(1):227–239 es_ES
dc.description.references Alonso P, Peinado J, Ibáñez J, Sastre J, Defez E (2017) A fast implementation of matrix trigonometric functions sine and cosine. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2017), pp 51–55, Costa Ballena, Rota, Cadiz (Spain), July 4th–8th es_ES
dc.description.references Sastre Jorge, Ibáñez Javier, Alonso Pedro, Peinado Jesús, Defez Emilio (2017) Two algorithms for computing the matrix cosine function. Appl Math Comput 312:66–77 es_ES
dc.description.references Paterson Michael S, Stockmeyer Larry J (1973) On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J Comput 2(1):60–66 es_ES
dc.description.references Higham Nicholas J (2008) Functions of matrices: theory and computation. SIAM, Philadelphia es_ES
dc.description.references Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2011) Efficient orthogonal matrix polynomial based method for computing matrix exponential. Appl Math Comput 217:6451–6463 es_ES
dc.description.references Sastre J, Ibáñez Javier J, Defez E, Ruiz Pedro A (2015) Efficient scaling-squaring Taylor method for computing matrix exponential. SIAM J Sci Comput 37(1):A439–455 es_ES
dc.description.references Higham NJ, Tisseur F (2000) A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J Matrix Anal Appl 21:1185–1201 es_ES
dc.description.references Demmel JW (1987) A counterexample for two conjectures about stability. IEEE Trans Autom Control 32:340–343 es_ES
dc.description.references Wright Thomas G (2002) EigTool library. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/ . Accessed May 2017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem