- -

Individual Behavior Modeling with Sensors Using Process Mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Individual Behavior Modeling with Sensors Using Process Mining

Mostrar el registro completo del ítem

Dogan, O.; Martinez-Millana, A.; Rojas, E.; Sepulveda, M.; Munoz Gama, J.; Traver Salcedo, V.; Fernández Llatas, C. (2019). Individual Behavior Modeling with Sensors Using Process Mining. Electronics. 8(7):1-17. https://doi.org/10.3390/electronics8070766

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148008

Ficheros en el ítem

Metadatos del ítem

Título: Individual Behavior Modeling with Sensors Using Process Mining
Autor: Dogan, Onur Martinez-Millana, Antonio Rojas, Eric Sepulveda, Marcos Munoz Gama, Jorge Traver Salcedo, Vicente Fernández Llatas, Carlos
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Understanding human behavior can assist in the adoption of satisfactory health interventions and improved care. One of the main problems relies on the definition of human behaviors, as human activities depend on ...[+]
Palabras clave: Behavior models , Process mining , Indoor location system , Smart homes , Sensors
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics8070766
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics8070766
Código del Proyecto:
info:eu-repo/grantAgreement/CONICYT//REDI 170136/
Agradecimientos:
This research was funded by ITACA SABIEN and partially supported by CONICYT REDI 170136.
Tipo: Artículo

References

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. doi:10.1016/j.future.2013.01.010

Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531-1539. doi:10.1016/j.jnca.2012.12.028

Riley, W. T., Nilsen, W. J., Manolio, T. A., Masys, D. R., & Lauer, M. (2015). News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Translational Behavioral Medicine, 5(3), 243-246. doi:10.1007/s13142-015-0320-5 [+]
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. doi:10.1016/j.future.2013.01.010

Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531-1539. doi:10.1016/j.jnca.2012.12.028

Riley, W. T., Nilsen, W. J., Manolio, T. A., Masys, D. R., & Lauer, M. (2015). News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Translational Behavioral Medicine, 5(3), 243-246. doi:10.1007/s13142-015-0320-5

Xue-Wen Chen, & Xiaotong Lin. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514-525. doi:10.1109/access.2014.2325029

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010

Mamlin, B. W., & Tierney, W. M. (2016). The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos. The American Journal of the Medical Sciences, 351(1), 59-68. doi:10.1016/j.amjms.2015.10.015

Bayo-Monton, J.-L., Martinez-Millana, A., Han, W., Fernandez-Llatas, C., Sun, Y., & Traver, V. (2018). Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors, 18(6), 1851. doi:10.3390/s18061851

Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38

Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2012). A review on vision techniques applied to Human Behaviour Analysis for Ambient-Assisted Living. Expert Systems with Applications, 39(12), 10873-10888. doi:10.1016/j.eswa.2012.03.005

Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153

Bamis, A., Lymberopoulos, D., Teixeira, T., & Savvides, A. (2010). The BehaviorScope framework for enabling ambient assisted living. Personal and Ubiquitous Computing, 14(6), 473-487. doi:10.1007/s00779-010-0282-z

Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557

Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434

Martinez-Millana, A., Lizondo, A., Gatta, R., Vera, S., Salcedo, V., & Fernandez-Llatas, C. (2019). Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. International Journal of Environmental Research and Public Health, 16(2), 199. doi:10.3390/ijerph16020199

Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769

Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart homes. International Journal of Industrial Ergonomics, 66, 26-56. doi:10.1016/j.ergon.2018.02.002

Kim, E., Helal, S., & Cook, D. (2010). Human Activity Recognition and Pattern Discovery. IEEE Pervasive Computing, 9(1), 48-53. doi:10.1109/mprv.2010.7

Li, N., & Becerik-Gerber, B. (2011). Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics, 25(3), 535-546. doi:10.1016/j.aei.2011.02.004

Fang, S.-H., Wang, C.-H., Huang, T.-Y., Yang, C.-H., & Chen, Y.-S. (2012). An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach. IEEE Communications Letters, 16(4), 564-567. doi:10.1109/lcomm.2012.022112.120131

Álvarez-García, J. A., Barsocchi, P., Chessa, S., & Salvi, D. (2013). Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 EvAAL competition. Journal of Ambient Intelligence and Smart Environments, 5(1), 119-132. doi:10.3233/ais-120192

Byrne, C., Collier, R., & O’Hare, G. (2018). A Review and Classification of Assisted Living Systems. Information, 9(7), 182. doi:10.3390/info9070182

Manzoor, A., Truong, H.-L., Calatroni, A., Roggen, D., Bouroche, M., Clarke, S., … Dustdar, S. (2013). Analyzing the impact of different action primitives in designing high-level human activity recognition systems. Journal of Ambient Intelligence and Smart Environments, 5(5), 443-461. doi:10.3233/ais-130223

Lee, S., Ha, K., & Lee, K. (2006). A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Transactions on Consumer Electronics, 52(4), 1311-1317. doi:10.1109/tce.2006.273150

Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884

Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. doi:10.1016/j.mfglet.2014.12.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem