- -

Individual Behavior Modeling with Sensors Using Process Mining

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Individual Behavior Modeling with Sensors Using Process Mining

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dogan, Onur es_ES
dc.contributor.author Martinez-Millana, Antonio es_ES
dc.contributor.author Rojas, Eric es_ES
dc.contributor.author Sepulveda, Marcos es_ES
dc.contributor.author Munoz Gama, Jorge es_ES
dc.contributor.author Traver Salcedo, Vicente es_ES
dc.contributor.author Fernández Llatas, Carlos es_ES
dc.date.accessioned 2020-07-15T03:32:32Z
dc.date.available 2020-07-15T03:32:32Z
dc.date.issued 2019-07-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148008
dc.description.abstract [EN] Understanding human behavior can assist in the adoption of satisfactory health interventions and improved care. One of the main problems relies on the definition of human behaviors, as human activities depend on multiple variables and are of dynamic nature. Although smart homes have advanced in the latest years and contributed to unobtrusive human behavior tracking, artificial intelligence has not coped yet with the problem of variability and dynamism of these behaviors. Process mining is an emerging discipline capable of adapting to the nature of high-variate data and extract knowledge to define behavior patterns. In this study, we analyze data from 25 in-house residents acquired with indoor location sensors by means of process mining clustering techniques, which allows obtaining workflows of the human behavior inside the house. Data are clustered by adjusting two variables: the similarity index and the Euclidean distance between workflows. Thereafter, two main models are created: (1) a workflow view to analyze the characteristics of the discovered clusters and the information they reveal about human behavior and (2) a calendar view, in which common behaviors are rendered in the way of a calendar allowing to detect relevant patterns depending on the day of the week and the season of the year. Three representative patients who performed three different behaviors: stable, unstable, and complex behaviors according to the proposed approach are investigated. This approach provides human behavior details in the manner of a workflow model, discovering user paths, frequent transitions between rooms, and the time the user was in each room, in addition to showing the results into the calendar view increases readability and visual attraction of human behaviors, allowing to us detect patterns happening on special days. es_ES
dc.description.sponsorship This research was funded by ITACA SABIEN and partially supported by CONICYT REDI 170136. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Behavior models es_ES
dc.subject Process mining es_ES
dc.subject Indoor location system es_ES
dc.subject Smart homes es_ES
dc.subject Sensors es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Individual Behavior Modeling with Sensors Using Process Mining es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics8070766 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICYT//REDI 170136/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Dogan, O.; Martinez-Millana, A.; Rojas, E.; Sepulveda, M.; Munoz Gama, J.; Traver Salcedo, V.; Fernández Llatas, C. (2019). Individual Behavior Modeling with Sensors Using Process Mining. Electronics. 8(7):1-17. https://doi.org/10.3390/electronics8070766 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics8070766 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\391047 es_ES
dc.contributor.funder ITACA SABIEN es_ES
dc.contributor.funder Comisión Nacional de Investigación Científica y Tecnológica, Chile es_ES
dc.description.references Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. doi:10.1016/j.future.2013.01.010 es_ES
dc.description.references Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531-1539. doi:10.1016/j.jnca.2012.12.028 es_ES
dc.description.references Riley, W. T., Nilsen, W. J., Manolio, T. A., Masys, D. R., & Lauer, M. (2015). News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Translational Behavioral Medicine, 5(3), 243-246. doi:10.1007/s13142-015-0320-5 es_ES
dc.description.references Xue-Wen Chen, & Xiaotong Lin. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514-525. doi:10.1109/access.2014.2325029 es_ES
dc.description.references Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010 es_ES
dc.description.references Mamlin, B. W., & Tierney, W. M. (2016). The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos. The American Journal of the Medical Sciences, 351(1), 59-68. doi:10.1016/j.amjms.2015.10.015 es_ES
dc.description.references Bayo-Monton, J.-L., Martinez-Millana, A., Han, W., Fernandez-Llatas, C., Sun, Y., & Traver, V. (2018). Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors, 18(6), 1851. doi:10.3390/s18061851 es_ES
dc.description.references Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38 es_ES
dc.description.references Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2012). A review on vision techniques applied to Human Behaviour Analysis for Ambient-Assisted Living. Expert Systems with Applications, 39(12), 10873-10888. doi:10.1016/j.eswa.2012.03.005 es_ES
dc.description.references Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153 es_ES
dc.description.references Bamis, A., Lymberopoulos, D., Teixeira, T., & Savvides, A. (2010). The BehaviorScope framework for enabling ambient assisted living. Personal and Ubiquitous Computing, 14(6), 473-487. doi:10.1007/s00779-010-0282-z es_ES
dc.description.references Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557 es_ES
dc.description.references Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434 es_ES
dc.description.references Martinez-Millana, A., Lizondo, A., Gatta, R., Vera, S., Salcedo, V., & Fernandez-Llatas, C. (2019). Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. International Journal of Environmental Research and Public Health, 16(2), 199. doi:10.3390/ijerph16020199 es_ES
dc.description.references Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769 es_ES
dc.description.references Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart homes. International Journal of Industrial Ergonomics, 66, 26-56. doi:10.1016/j.ergon.2018.02.002 es_ES
dc.description.references Kim, E., Helal, S., & Cook, D. (2010). Human Activity Recognition and Pattern Discovery. IEEE Pervasive Computing, 9(1), 48-53. doi:10.1109/mprv.2010.7 es_ES
dc.description.references Li, N., & Becerik-Gerber, B. (2011). Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics, 25(3), 535-546. doi:10.1016/j.aei.2011.02.004 es_ES
dc.description.references Fang, S.-H., Wang, C.-H., Huang, T.-Y., Yang, C.-H., & Chen, Y.-S. (2012). An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach. IEEE Communications Letters, 16(4), 564-567. doi:10.1109/lcomm.2012.022112.120131 es_ES
dc.description.references Álvarez-García, J. A., Barsocchi, P., Chessa, S., & Salvi, D. (2013). Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 EvAAL competition. Journal of Ambient Intelligence and Smart Environments, 5(1), 119-132. doi:10.3233/ais-120192 es_ES
dc.description.references Byrne, C., Collier, R., & O’Hare, G. (2018). A Review and Classification of Assisted Living Systems. Information, 9(7), 182. doi:10.3390/info9070182 es_ES
dc.description.references Manzoor, A., Truong, H.-L., Calatroni, A., Roggen, D., Bouroche, M., Clarke, S., … Dustdar, S. (2013). Analyzing the impact of different action primitives in designing high-level human activity recognition systems. Journal of Ambient Intelligence and Smart Environments, 5(5), 443-461. doi:10.3233/ais-130223 es_ES
dc.description.references Lee, S., Ha, K., & Lee, K. (2006). A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Transactions on Consumer Electronics, 52(4), 1311-1317. doi:10.1109/tce.2006.273150 es_ES
dc.description.references Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884 es_ES
dc.description.references Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. doi:10.1016/j.mfglet.2014.12.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem