Mostrar el registro sencillo del ítem
dc.contributor.author | Dogan, Onur | es_ES |
dc.contributor.author | Martinez-Millana, Antonio | es_ES |
dc.contributor.author | Rojas, Eric | es_ES |
dc.contributor.author | Sepulveda, Marcos | es_ES |
dc.contributor.author | Munoz Gama, Jorge | es_ES |
dc.contributor.author | Traver Salcedo, Vicente | es_ES |
dc.contributor.author | Fernández Llatas, Carlos | es_ES |
dc.date.accessioned | 2020-07-15T03:32:32Z | |
dc.date.available | 2020-07-15T03:32:32Z | |
dc.date.issued | 2019-07-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148008 | |
dc.description.abstract | [EN] Understanding human behavior can assist in the adoption of satisfactory health interventions and improved care. One of the main problems relies on the definition of human behaviors, as human activities depend on multiple variables and are of dynamic nature. Although smart homes have advanced in the latest years and contributed to unobtrusive human behavior tracking, artificial intelligence has not coped yet with the problem of variability and dynamism of these behaviors. Process mining is an emerging discipline capable of adapting to the nature of high-variate data and extract knowledge to define behavior patterns. In this study, we analyze data from 25 in-house residents acquired with indoor location sensors by means of process mining clustering techniques, which allows obtaining workflows of the human behavior inside the house. Data are clustered by adjusting two variables: the similarity index and the Euclidean distance between workflows. Thereafter, two main models are created: (1) a workflow view to analyze the characteristics of the discovered clusters and the information they reveal about human behavior and (2) a calendar view, in which common behaviors are rendered in the way of a calendar allowing to detect relevant patterns depending on the day of the week and the season of the year. Three representative patients who performed three different behaviors: stable, unstable, and complex behaviors according to the proposed approach are investigated. This approach provides human behavior details in the manner of a workflow model, discovering user paths, frequent transitions between rooms, and the time the user was in each room, in addition to showing the results into the calendar view increases readability and visual attraction of human behaviors, allowing to us detect patterns happening on special days. | es_ES |
dc.description.sponsorship | This research was funded by ITACA SABIEN and partially supported by CONICYT REDI 170136. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Electronics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Behavior models | es_ES |
dc.subject | Process mining | es_ES |
dc.subject | Indoor location system | es_ES |
dc.subject | Smart homes | es_ES |
dc.subject | Sensors | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Individual Behavior Modeling with Sensors Using Process Mining | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/electronics8070766 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICYT//REDI 170136/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Dogan, O.; Martinez-Millana, A.; Rojas, E.; Sepulveda, M.; Munoz Gama, J.; Traver Salcedo, V.; Fernández Llatas, C. (2019). Individual Behavior Modeling with Sensors Using Process Mining. Electronics. 8(7):1-17. https://doi.org/10.3390/electronics8070766 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/electronics8070766 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.eissn | 2079-9292 | es_ES |
dc.relation.pasarela | S\391047 | es_ES |
dc.contributor.funder | ITACA SABIEN | es_ES |
dc.contributor.funder | Comisión Nacional de Investigación Científica y Tecnológica, Chile | es_ES |
dc.description.references | Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660. doi:10.1016/j.future.2013.01.010 | es_ES |
dc.description.references | Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531-1539. doi:10.1016/j.jnca.2012.12.028 | es_ES |
dc.description.references | Riley, W. T., Nilsen, W. J., Manolio, T. A., Masys, D. R., & Lauer, M. (2015). News from the NIH: potential contributions of the behavioral and social sciences to the precision medicine initiative. Translational Behavioral Medicine, 5(3), 243-246. doi:10.1007/s13142-015-0320-5 | es_ES |
dc.description.references | Xue-Wen Chen, & Xiaotong Lin. (2014). Big Data Deep Learning: Challenges and Perspectives. IEEE Access, 2, 514-525. doi:10.1109/access.2014.2325029 | es_ES |
dc.description.references | Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787-2805. doi:10.1016/j.comnet.2010.05.010 | es_ES |
dc.description.references | Mamlin, B. W., & Tierney, W. M. (2016). The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos. The American Journal of the Medical Sciences, 351(1), 59-68. doi:10.1016/j.amjms.2015.10.015 | es_ES |
dc.description.references | Bayo-Monton, J.-L., Martinez-Millana, A., Han, W., Fernandez-Llatas, C., Sun, Y., & Traver, V. (2018). Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care. Sensors, 18(6), 1851. doi:10.3390/s18061851 | es_ES |
dc.description.references | Larry Jameson, J., & Longo, D. L. (2015). Precision Medicine—Personalized, Problematic, and Promising. Obstetrical & Gynecological Survey, 70(10), 612-614. doi:10.1097/01.ogx.0000472121.21647.38 | es_ES |
dc.description.references | Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2012). A review on vision techniques applied to Human Behaviour Analysis for Ambient-Assisted Living. Expert Systems with Applications, 39(12), 10873-10888. doi:10.1016/j.eswa.2012.03.005 | es_ES |
dc.description.references | Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153 | es_ES |
dc.description.references | Bamis, A., Lymberopoulos, D., Teixeira, T., & Savvides, A. (2010). The BehaviorScope framework for enabling ambient assisted living. Personal and Ubiquitous Computing, 14(6), 473-487. doi:10.1007/s00779-010-0282-z | es_ES |
dc.description.references | Dogan, O., Bayo-Monton, J.-L., Fernandez-Llatas, C., & Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors, 19(3), 557. doi:10.3390/s19030557 | es_ES |
dc.description.references | Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434 | es_ES |
dc.description.references | Martinez-Millana, A., Lizondo, A., Gatta, R., Vera, S., Salcedo, V., & Fernandez-Llatas, C. (2019). Process Mining Dashboard in Operating Rooms: Analysis of Staff Expectations with Analytic Hierarchy Process. International Journal of Environmental Research and Public Health, 16(2), 199. doi:10.3390/ijerph16020199 | es_ES |
dc.description.references | Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769 | es_ES |
dc.description.references | Mshali, H., Lemlouma, T., Moloney, M., & Magoni, D. (2018). A survey on health monitoring systems for health smart homes. International Journal of Industrial Ergonomics, 66, 26-56. doi:10.1016/j.ergon.2018.02.002 | es_ES |
dc.description.references | Kim, E., Helal, S., & Cook, D. (2010). Human Activity Recognition and Pattern Discovery. IEEE Pervasive Computing, 9(1), 48-53. doi:10.1109/mprv.2010.7 | es_ES |
dc.description.references | Li, N., & Becerik-Gerber, B. (2011). Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment. Advanced Engineering Informatics, 25(3), 535-546. doi:10.1016/j.aei.2011.02.004 | es_ES |
dc.description.references | Fang, S.-H., Wang, C.-H., Huang, T.-Y., Yang, C.-H., & Chen, Y.-S. (2012). An Enhanced ZigBee Indoor Positioning System With an Ensemble Approach. IEEE Communications Letters, 16(4), 564-567. doi:10.1109/lcomm.2012.022112.120131 | es_ES |
dc.description.references | Álvarez-García, J. A., Barsocchi, P., Chessa, S., & Salvi, D. (2013). Evaluation of localization and activity recognition systems for ambient assisted living: The experience of the 2012 EvAAL competition. Journal of Ambient Intelligence and Smart Environments, 5(1), 119-132. doi:10.3233/ais-120192 | es_ES |
dc.description.references | Byrne, C., Collier, R., & O’Hare, G. (2018). A Review and Classification of Assisted Living Systems. Information, 9(7), 182. doi:10.3390/info9070182 | es_ES |
dc.description.references | Manzoor, A., Truong, H.-L., Calatroni, A., Roggen, D., Bouroche, M., Clarke, S., … Dustdar, S. (2013). Analyzing the impact of different action primitives in designing high-level human activity recognition systems. Journal of Ambient Intelligence and Smart Environments, 5(5), 443-461. doi:10.3233/ais-130223 | es_ES |
dc.description.references | Lee, S., Ha, K., & Lee, K. (2006). A pyroelectric infrared sensor-based indoor location-aware system for the smart home. IEEE Transactions on Consumer Electronics, 52(4), 1311-1317. doi:10.1109/tce.2006.273150 | es_ES |
dc.description.references | Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884 | es_ES |
dc.description.references | Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23. doi:10.1016/j.mfglet.2014.12.001 | es_ES |