- -

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species

Show full item record

Penella-Casañ, C.; Pina, A.; San Bautista Primo, A.; López Galarza, SV.; Calatayud, A. (2017). Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species. Photosynthetica. 55(4):671-678. https://doi.org/10.1007/s11099-017-0690-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148094

Files in this item

Item Metadata

Title: Chlorophyll fluorescence imaging can reflect development of vascular connection in grafting union in some Solanaceae species
Author: Penella-Casañ, Consuelo Pina, A. San Bautista Primo, Alberto López Galarza, Salvador Vicente Calatayud, A.
UPV Unit: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Issued date:
Abstract:
[EN] Graft union development in plants has been studied mainly by destructive methods such as histological studies. The aim of this work was to evaluate whether the chlorophyll fluorescence imaging (CFI) technique is ...[+]
Subjects: Callus , Compatibility , Graft , Pepper , Photochemical quenching , Vascular connections
Copyrigths: Reserva de todos los derechos
Source:
Photosynthetica. (issn: 0300-3604 )
DOI: 10.1007/s11099-017-0690-7
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11099-017-0690-7
Project ID:
info:eu-repo/grantAgreement/MINECO//RTA2013-00022-C02-01/ES/Obtención de patrones de pimiento y su valoración fisiológica, agronómica y genómica frente a estrés hídrico y salino/
Thanks:
This work was financed by INIA (Spain) through Project RTA2013-00022-C02-01 and the European Regional Development Fund (ERDF).
Type: Artículo

References

Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M. J., Nedbal, L., & Roitsch, T. (2006). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58(4), 797-806. doi:10.1093/jxb/erl208

Bilger, W., & Björkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf00197951

Calatayud, Á., Gorbe, E., Roca, D., & Martínez, P. F. (2008). Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environmental and Experimental Botany, 64(1), 65-74. doi:10.1016/j.envexpbot.2008.02.003 [+]
Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, M. J., Nedbal, L., & Roitsch, T. (2006). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58(4), 797-806. doi:10.1093/jxb/erl208

Bilger, W., & Björkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta, 184(2), 226-234. doi:10.1007/bf00197951

Calatayud, Á., Gorbe, E., Roca, D., & Martínez, P. F. (2008). Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environmental and Experimental Botany, 64(1), 65-74. doi:10.1016/j.envexpbot.2008.02.003

Clearwater, M. J., Lowe, R. G., Hofstee, B. J., Barclay, C., Mandemaker, A. J., & Blattmann, P. (2004). Hydraulic conductance and rootstock effects in grafted vines of kiwifruit. Journal of Experimental Botany, 55(401), 1371-1382. doi:10.1093/jxb/erh137

DELOIRE, A., & HÉBANT, C. (1982). Peroxidase Activity and Lignification at the Interface Between Stock and Scion of Compatible and Incompatible Grafts of Capsicum on Lycopersicum. Annals of Botany, 49(6), 887-891. doi:10.1093/oxfordjournals.aob.a086314

Dhondt, S., Vanhaeren, H., Van Loo, D., Cnudde, V., & Inzé, D. (2010). Plant structure visualization by high-resolution X-ray computed tomography. Trends in Plant Science, 15(8), 419-422. doi:10.1016/j.tplants.2010.05.002

Errea, P., Garay, L., & Marín, J. A. (2001). Early detection of graft incompatibility in apricot (Prunus armeniaca ) using in vitro techniques. Physiologia Plantarum, 112(1), 135-141. doi:10.1034/j.1399-3054.2001.1120118.x

Errea, P. (1998). Implications of phenolic compounds in graft incompatibility in fruit tree species. Scientia Horticulturae, 74(3), 195-205. doi:10.1016/s0304-4238(98)00087-9

Errea, P., Felipe, A., & Herrero, M. (1994). Graft establishment between compatible and incompatiblePrunusspp. Journal of Experimental Botany, 45(3), 393-401. doi:10.1093/jxb/45.3.393

FERNANDEZ-GARCIA, N. (2004). Graft Union Formation in Tomato Plants: Peroxidase and Catalase Involvement. Annals of Botany, 93(1), 53-60. doi:10.1093/aob/mch014

Fernández-García, N., Martínez, V., & Carvajal, M. (2004). Effect of salinity on growth, mineral composition, and water relations of grafted tomato plants. Journal of Plant Nutrition and Soil Science, 167(5), 616-622. doi:10.1002/jpln.200420416

Flaishman, M. A., Loginovsky, K., Golobowich, S., & Lev-Yadun, S. (2008). Arabidopsis thaliana as a Model System for Graft Union Development in Homografts and Heterografts. Journal of Plant Growth Regulation, 27(3), 231-239. doi:10.1007/s00344-008-9050-y

Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-9

Goldschmidt, E. E. (2014). Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00727

Guidi, L., Mori, S., Degl’Innocenti, E., & Pecchia, S. (2007). Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. Plant Physiology and Biochemistry, 45(10-11), 851-857. doi:10.1016/j.plaphy.2007.07.001

Hudina, M., Orazem, P., Jakopic, J., & Stampar, F. (2014). The phenolic content and its involvement in the graft incompatibility process of various pear rootstocks (Pyrus communis L.). Journal of Plant Physiology, 171(5), 76-84. doi:10.1016/j.jplph.2013.10.022

Irisarri, P., Binczycki, P., Errea, P., Martens, H. J., & Pina, A. (2015). Oxidative stress associated with rootstock–scion interactions in pear/quince combinations during early stages of graft development. Journal of Plant Physiology, 176, 25-35. doi:10.1016/j.jplph.2014.10.015

Kawaguchi, M., Taji, A., Backhouse, D., & Oda, M. (2008). Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5), 581-588. doi:10.1080/14620316.2008.11512427

Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A History of Grafting. Horticultural Reviews, 437-493. doi:10.1002/9780470593776.ch9

�quist, G., & Chow, W. S. (1992). On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O2 evolution. Photosynthesis Research, 33(1), 51-62. doi:10.1007/bf00032982

OXBOROUGH, K., & BAKER, N. R. (1997). An instrument capable of imaging chlorophyll a fluorescence from intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant, Cell and Environment, 20(12), 1473-1483. doi:10.1046/j.1365-3040.1997.d01-42.x

Padgett, M., & Morrison, J. C. (1990). Changes in Grape Berry Exudates during Fruit Development and Their Effect on Mycelial Growth of Botrytis cinerea. Journal of the American Society for Horticultural Science, 115(2), 269-273. doi:10.21273/jashs.115.2.269

Penella, C., Nebauer, S. G., Quiñones, A., San Bautista, A., López-Galarza, S., & Calatayud, A. (2015). Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science, 230, 12-22. doi:10.1016/j.plantsci.2014.10.007

Penella, C., Nebauer, S. G., Bautista, A. S., López-Galarza, S., & Calatayud, Á. (2014). Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: Physiological responses. Journal of Plant Physiology, 171(10), 842-851. doi:10.1016/j.jplph.2014.01.013

Penella, C., Nebauer, S. G., López-Galarza, S., SanBautista, A., Rodríguez-Burruezo, A., & Calatayud, A. (2014). Evaluation of some pepper genotypes as rootstocks in water stress conditions. Horticultural Science, 41(No. 4), 192-200. doi:10.17221/163/2013-hortsci

Pina, A., Errea, P., & Martens, H. J. (2012). Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Scientia Horticulturae, 143, 144-150. doi:10.1016/j.scienta.2012.06.017

Pina, A., Errea, P., Schulz, A., & Martens, H. J. (2009). Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiology, 29(6), 809-818. doi:10.1093/treephys/tpp025

Quilliam, R. S., Swarbrick, P. J., Scholes, J. D., & Rolfe, S. A. (2005). Imaging photosynthesis in wounded leaves of Arabidopsis thaliana. Journal of Experimental Botany, 57(1), 55-69. doi:10.1093/jxb/erj039

Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant–pathogen interactions. Protoplasma, 247(3-4), 163-175. doi:10.1007/s00709-010-0203-z

Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127(2), 172-179. doi:10.1016/j.scienta.2010.09.001

Sánchez-Rodríguez, E., Romero, L., & Ruiz, J. M. (2013). Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 32(4), 831-842. doi:10.1007/s00344-013-9348-2

Savvas, D., Colla, G., Rouphael, Y., & Schwarz, D. (2010). Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Scientia Horticulturae, 127(2), 156-161. doi:10.1016/j.scienta.2010.09.011

Schöning, U., & Kollmann, R. (1997). Phloem translocation in regeneratingin vitro- heterografts of different compatibility. Journal of Experimental Botany, 48(2), 289-295. doi:10.1093/jxb/48.2.289

Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10(1-2), 51-62. doi:10.1007/bf00024185

Tadeo, F. R., Gómez-Cadenas, A., Ben-Cheikh, W., Primo-Millo, E., & Talón, M. (1997). Gibberellin-ethylene interaction controls radial expansion in citrus roots. Planta, 202(3), 370-378. doi:10.1007/s004250050139

Trinchera, A., Pandozy, G., Rinaldi, S., Crinò, P., Temperini, O., & Rea, E. (2013). Graft union formation in artichoke grafting onto wild and cultivated cardoon: An anatomical study. Journal of Plant Physiology, 170(18), 1569-1578. doi:10.1016/j.jplph.2013.06.018

Wang, Y., & Kollmann, R. (1996). Vascular Differentiation in the Graft Union of in-vitro Grafts with Different Compatibility. — Structural and Functional Aspects. Journal of Plant Physiology, 147(5), 521-533. doi:10.1016/s0176-1617(96)80041-1

Yin, H., Yan, B., Sun, J., Jia, P., Zhang, Z., Yan, X., … Liu, H. (2012). Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany, 63(11), 4219-4232. doi:10.1093/jxb/ers109

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record