- -

Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids

Show full item record

Oliver-Tomás, B.; Renz, M.; Corma Canós, A. (2017). Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids. Chemistry - A European Journal. 23(52):12900-12908. https://doi.org/10.1002/chem.201702680

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148183

Files in this item

Item Metadata

Title: Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids
Author: Oliver-Tomás, Borja Renz, Michael Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] For the reaction mechanism of the ketonic decarboxylation of two carboxylic acids, a -keto acid is favored as key intermediate in many experimental and theoretical studies. Hydrogen atoms in the -position are an ...[+]
Subjects: Biomass , Cyclization , Green chemistry , Surface chemistry , Lactones , Reaction mechanisms
Copyrigths: Reserva de todos los derechos
Source:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201702680
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/chem.201702680
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
MINECO/CTQ2015-67591-P
Description: "This is the peer reviewed version of the following article: Oliver-Tomas, Borja, Michael Renz, and Avelino Corma. 2017. Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids. Chemistry - A European Journal 23 (52). Wiley: 12900 908. doi:10.1002/chem.201702680, which has been published in final form at https://doi.org/10.1002/chem.201702680. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
The authors thank MINECO (CTQ2015-67591-P and Severo Ochoa program, SEV-2016-0683) and Generalitat Valenciana (PROMETEO II/2013/011 Project) for funding this work. B.O.-T. is grateful to the CSIC (JAE program) for his PhD ...[+]
Type: Artículo

References

Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546

Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h

Wu, K., Wu, Y., Chen, Y., Chen, H., Wang, J., & Yang, M. (2016). Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase. ChemSusChem, 9(12), 1355-1385. doi:10.1002/cssc.201600013 [+]
Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546

Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h

Wu, K., Wu, Y., Chen, Y., Chen, H., Wang, J., & Yang, M. (2016). Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase. ChemSusChem, 9(12), 1355-1385. doi:10.1002/cssc.201600013

Resasco, D. E., Wang, B., & Crossley, S. (2016). Zeolite-catalysed C–C bond forming reactions for biomass conversion to fuels and chemicals. Catalysis Science & Technology, 6(8), 2543-2559. doi:10.1039/c5cy02271a

F. Iliopoulou, E. (2010). Review of C-C Coupling Reactions in Biomass Exploitation Processes. Current Organic Synthesis, 7(6), 587-598. doi:10.2174/157017910794328592

Murzin, D. Y., & Simakova, I. L. (2011). Catalysis in biomass processing. Catalysis in Industry, 3(3), 218-249. doi:10.1134/s207005041103007x

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Simakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208-224. doi:10.1016/j.jechem.2016.01.004

Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c

Corma, A., Oliver-Tomas, B., Renz, M., & Simakova, I. L. (2014). Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. Journal of Molecular Catalysis A: Chemical, 388-389, 116-122. doi:10.1016/j.molcata.2013.11.015

Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103

Neunhoeffer, O., & Paschke, P. (1939). Über den Mechanismus der Ketonbildung aus Carbonsäuren. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 919-929. doi:10.1002/cber.19390720442

Farmer, E. H., & Kracovski, J. (1927). CII.—The effect of gem-dialkyl groups on the formation and stability of the anhydrides of dicarboxylic acids. J. Chem. Soc., 0(0), 680-685. doi:10.1039/jr9270000680

Eberson, L. (1966). An anomalous cyclization of 2,2,5,5-tetramethyladipic acid. Tetrahedron Letters, 7(2), 223-226. doi:10.1016/s0040-4039(00)70218-8

Rand, L., Wagner, W., Warner, P. O., & Kovac, L. R. (1962). Reactions Catalyzed by Potassium Fluoride. II. The Conversion of Adipic Acid to Cyclopentanone. The Journal of Organic Chemistry, 27(3), 1034-1035. doi:10.1021/jo01050a504

Aranda-Pérez, N., Ruiz, M. P., Echave, J., & Faria, J. (2017). Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General, 531, 106-118. doi:10.1016/j.apcata.2016.10.025

Bennett, J. A., Parlett, C. M. A., Isaacs, M. A., Durndell, L. J., Olivi, L., Lee, A. F., & Wilson, K. (2017). Acetic Acid Ketonization over Fe 3 O 4 /SiO 2 for Pyrolysis Bio‐Oil Upgrading. ChemCatChem, 9(9), 1648-1654. doi:10.1002/cctc.201601269

Stefanidis, S. D., Karakoulia, S. A., Kalogiannis, K. G., Iliopoulou, E. ., Delimitis, A., Yiannoulakis, H., … Triantafyllidis, K. S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Applied Catalysis B: Environmental, 196, 155-173. doi:10.1016/j.apcatb.2016.05.031

Lee, Y., Choi, J.-W., Suh, D. J., Ha, J.-M., & Lee, C.-H. (2015). Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Applied Catalysis A: General, 506, 288-293. doi:10.1016/j.apcata.2015.09.008

Baylon, R. A. L., Sun, J., Martin, K. J., Venkitasubramanian, P., & Wang, Y. (2016). Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs. Chemical Communications, 52(28), 4975-4978. doi:10.1039/c5cc10528e

Woo, Y., Lee, Y., Choi, J.-W., Suh, D. J., Lee, C.-H., Ha, J.-M., & Park, M.-J. (2017). Role of Anhydride in the Ketonization of Carboxylic Acid: Kinetic Study on Dimerization of Hexanoic Acid. Industrial & Engineering Chemistry Research, 56(4), 872-880. doi:10.1021/acs.iecr.6b04605

Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h

Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989

Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419

Oliver-Tomas, B., Gonell, F., Pulido, A., Renz, M., & Boronat, M. (2016). Effect of the Cα substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy. Catalysis Science & Technology, 6(14), 5561-5566. doi:10.1039/c6cy00395h

Wang, S., & Iglesia, E. (2017). Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. Journal of Catalysis, 345, 183-206. doi:10.1016/j.jcat.2016.11.006

Tosoni, S., & Pacchioni, G. (2016). Acetic acid ketonization on tetragonal zirconia: Role of surface reduction. Journal of Catalysis, 344, 465-473. doi:10.1016/j.jcat.2016.10.002

Pacchioni, G. (2014). Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT Perspective. ACS Catalysis, 4(9), 2874-2888. doi:10.1021/cs500791w

Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624

Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8

Orozco, L. M., Renz, M., & Corma, A. (2016). Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes. ChemSusChem, 9(17), 2430-2442. doi:10.1002/cssc.201600654

Ketones 1982

K. Matsuoka K. Tagawa Ketones 1985

Miller, A. L., Cook, N. C., & Whitmore, F. C. (1950). The Ketonic Decarboxylation Reaction1: The Ketonic Decarboxylation of Trimethylacetic Acid2and Isobutyric Acid. Journal of the American Chemical Society, 72(6), 2732-2735. doi:10.1021/ja01162a107

Wang, G., Wang, H., Zhang, H., Zhu, Q., Li, C., & Shan, H. (2016). Highly Selective and Stable NiSn/SiO2Catalyst for Isobutane Dehydrogenation: Effects of Sn Addition. ChemCatChem, 8(19), 3137-3145. doi:10.1002/cctc.201600685

Estes, D. P., Siddiqi, G., Allouche, F., Kovtunov, K. V., Safonova, O. V., Trigub, A. L., … Copéret, C. (2016). C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs. Journal of the American Chemical Society, 138(45), 14987-14997. doi:10.1021/jacs.6b08705

Rodemerck, U., Sokolov, S., Stoyanova, M., Bentrup, U., Linke, D., & Kondratenko, E. V. (2016). Influence of support and kind of VO species on isobutene selectivity and coke deposition in non-oxidative dehydrogenation of isobutane. Journal of Catalysis, 338, 174-183. doi:10.1016/j.jcat.2016.03.003

Yokoyama, T., Setoyama, T., Fujita, N., Nakajima, M., Maki, T., & Fujii, K. (1992). Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst. Applied Catalysis A: General, 88(2), 149-161. doi:10.1016/0926-860x(92)80212-u

Renz, M., & Corma, A. (2004). Ketonic Decarboxylation Catalysed by Weak Bases and Its Application to an Optically Pure Substrate. European Journal of Organic Chemistry, 2004(9), 2036-2039. doi:10.1002/ejoc.200300778

Yang, C.-G., Reich, N. W., Shi, Z., & He, C. (2005). Intramolecular Additions of Alcohols and Carboxylic Acids to Inert Olefins Catalyzed by Silver(I) Triflate. Organic Letters, 7(21), 4553-4556. doi:10.1021/ol051065f

Coffman, D. D., Jenner, E. L., & Lipscomb, R. D. (1958). Syntheses by Free-radical Reactions. I. Oxidative Coupling Effected by Hydroxyl Radicals. Journal of the American Chemical Society, 80(11), 2864-2872. doi:10.1021/ja01544a068

Langhals, E., & Langhals, H. (1990). Alkylation of ketones by use of solid KOH in dimethyl sulfoxide. Tetrahedron Letters, 31(6), 859-862. doi:10.1016/s0040-4039(00)94647-1

Giera, H., Huisgen, R., Langhals, E., & Polborn, K. (2002). Massive Steric Hindrance in Two‘Thiocarbonyl Ylides’: Cycloadditions with Tetra-Acceptor-Substituted Ethylenesvia Zwitterionic Intermediates. Helvetica Chimica Acta, 85(6), 1523-1545. doi:10.1002/1522-2675(200206)85:6<1523::aid-hlca1523>3.0.co;2-o

Stothers, J. B., & Tan, C. T. (1974). 13C Nuclear Magnetic Resonance Studies. 34. The 13C Spectra of Several Methylcyclopentanones and -cyclohexanones. Canadian Journal of Chemistry, 52(2), 308-314. doi:10.1139/v74-050

Takenaka, K., Mohanta, S. C., Patil, M. L., Rao, C. V. L., Takizawa, S., Suzuki, T., & Sasai, H. (2010). Enantioselective Wacker-Type Cyclization of 2-Alkenyl-1,3-diketones Promoted by Pd-SPRIX Catalyst. Organic Letters, 12(15), 3480-3483. doi:10.1021/ol1013069

Dauben, W. G., & Michno, D. M. (1977). Direct oxidation of tertiary allylic alcohols. A simple and effective method for alkylative carbonyl transposition. The Journal of Organic Chemistry, 42(4), 682-685. doi:10.1021/jo00424a023

Vatèle, J.-M. (2010). Lewis acid-catalyzed oxidative rearrangement of tertiary allylic alcohols mediated by TEMPO. Tetrahedron, 66(4), 904-912. doi:10.1016/j.tet.2009.11.104

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record