- -

Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oliver-Tomás, Borja es_ES
dc.contributor.author Renz, Michael es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-07-17T03:32:04Z
dc.date.available 2020-07-17T03:32:04Z
dc.date.issued 2017-09-18 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148183
dc.description "This is the peer reviewed version of the following article: Oliver-Tomas, Borja, Michael Renz, and Avelino Corma. 2017. Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids. Chemistry - A European Journal 23 (52). Wiley: 12900 908. doi:10.1002/chem.201702680, which has been published in final form at https://doi.org/10.1002/chem.201702680. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] For the reaction mechanism of the ketonic decarboxylation of two carboxylic acids, a -keto acid is favored as key intermediate in many experimental and theoretical studies. Hydrogen atoms in the -position are an indispensable requirement for the substrates to react by following this mechanism. However, isolated observations with tertiary carboxylic acids are not consistent with it and these are revisited and discussed herein. The experimental results obtained with pivalic acid indicate that the ketonic decarboxylation does not occur with this substrate. Instead, it is consumed in alternative reactions such as disintegration into isobutene, carbon monoxide, and water (retro-Koch reaction). In addition, the carboxylic acid is isomerized or loses carbon atoms, which converts the tertiary carboxylic acid into carboxylic acids bearing -proton atoms. Hence, the latter are suitable to react through the -keto acid pathway. A second substrate, 2,2,5,5-tetramethyladipic acid, reacted by following the same retro-Koch pathway. The primary product was the monocarboxylic acid 2,2,5-trimethyl-4-hexenoic acid (and its double bond isomer), which might be further transformed into a cyclic enone or a lactone. The ketonic decarboxylation product, 2,2,5,5-tetramethylcyclopentanone was observed in traces (<0.2% yield). Therefore, it can be concluded that the observed experimental results further support the proposed mechanism for the ketonic decarboxylation via the -keto acid intermediate. es_ES
dc.description.sponsorship The authors thank MINECO (CTQ2015-67591-P and Severo Ochoa program, SEV-2016-0683) and Generalitat Valenciana (PROMETEO II/2013/011 Project) for funding this work. B.O.-T. is grateful to the CSIC (JAE program) for his PhD fellowship. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation MINECO/CTQ2015-67591-P es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomass es_ES
dc.subject Cyclization es_ES
dc.subject Green chemistry es_ES
dc.subject Surface chemistry es_ES
dc.subject Lactones es_ES
dc.subject Reaction mechanisms es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201702680 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F011/ES/Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas (PROMETEO)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Oliver-Tomás, B.; Renz, M.; Corma Canós, A. (2017). Ketone Formation from Carboxylic Acids by Ketonic Decarboxylation: The Exceptional Case of the Tertiary Carboxylic Acids. Chemistry - A European Journal. 23(52):12900-12908. https://doi.org/10.1002/chem.201702680 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201702680 es_ES
dc.description.upvformatpinicio 12900 es_ES
dc.description.upvformatpfin 12908 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 52 es_ES
dc.identifier.pmid 28677251 es_ES
dc.relation.pasarela S\351152 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Renz, M. (2005). Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope. European Journal of Organic Chemistry, 2005(6), 979-988. doi:10.1002/ejoc.200400546 es_ES
dc.description.references Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion. ACS Catalysis, 3(11), 2456-2473. doi:10.1021/cs400501h es_ES
dc.description.references Wu, K., Wu, Y., Chen, Y., Chen, H., Wang, J., & Yang, M. (2016). Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase. ChemSusChem, 9(12), 1355-1385. doi:10.1002/cssc.201600013 es_ES
dc.description.references Resasco, D. E., Wang, B., & Crossley, S. (2016). Zeolite-catalysed C–C bond forming reactions for biomass conversion to fuels and chemicals. Catalysis Science & Technology, 6(8), 2543-2559. doi:10.1039/c5cy02271a es_ES
dc.description.references F. Iliopoulou, E. (2010). Review of C-C Coupling Reactions in Biomass Exploitation Processes. Current Organic Synthesis, 7(6), 587-598. doi:10.2174/157017910794328592 es_ES
dc.description.references Murzin, D. Y., & Simakova, I. L. (2011). Catalysis in biomass processing. Catalysis in Industry, 3(3), 218-249. doi:10.1134/s207005041103007x es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Simakova, I. L., & Murzin, D. Y. (2016). Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: Design of multifunctional catalyst, kinetic and mechanistic aspects. Journal of Energy Chemistry, 25(2), 208-224. doi:10.1016/j.jechem.2016.01.004 es_ES
dc.description.references Serrano-Ruiz, J. C., Wang, D., & Dumesic, J. A. (2010). Catalytic upgrading of levulinic acid to 5-nonanone. Green Chemistry, 12(4), 574. doi:10.1039/b923907c es_ES
dc.description.references Corma, A., Oliver-Tomas, B., Renz, M., & Simakova, I. L. (2014). Conversion of levulinic acid derived valeric acid into a liquid transportation fuel of the kerosene type. Journal of Molecular Catalysis A: Chemical, 388-389, 116-122. doi:10.1016/j.molcata.2013.11.015 es_ES
dc.description.references Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103 es_ES
dc.description.references Neunhoeffer, O., & Paschke, P. (1939). Über den Mechanismus der Ketonbildung aus Carbonsäuren. Berichte der deutschen chemischen Gesellschaft (A and B Series), 72(4), 919-929. doi:10.1002/cber.19390720442 es_ES
dc.description.references Farmer, E. H., & Kracovski, J. (1927). CII.—The effect of gem-dialkyl groups on the formation and stability of the anhydrides of dicarboxylic acids. J. Chem. Soc., 0(0), 680-685. doi:10.1039/jr9270000680 es_ES
dc.description.references Eberson, L. (1966). An anomalous cyclization of 2,2,5,5-tetramethyladipic acid. Tetrahedron Letters, 7(2), 223-226. doi:10.1016/s0040-4039(00)70218-8 es_ES
dc.description.references Rand, L., Wagner, W., Warner, P. O., & Kovac, L. R. (1962). Reactions Catalyzed by Potassium Fluoride. II. The Conversion of Adipic Acid to Cyclopentanone. The Journal of Organic Chemistry, 27(3), 1034-1035. doi:10.1021/jo01050a504 es_ES
dc.description.references Aranda-Pérez, N., Ruiz, M. P., Echave, J., & Faria, J. (2017). Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General, 531, 106-118. doi:10.1016/j.apcata.2016.10.025 es_ES
dc.description.references Bennett, J. A., Parlett, C. M. A., Isaacs, M. A., Durndell, L. J., Olivi, L., Lee, A. F., & Wilson, K. (2017). Acetic Acid Ketonization over Fe 3 O 4 /SiO 2 for Pyrolysis Bio‐Oil Upgrading. ChemCatChem, 9(9), 1648-1654. doi:10.1002/cctc.201601269 es_ES
dc.description.references Stefanidis, S. D., Karakoulia, S. A., Kalogiannis, K. G., Iliopoulou, E. ., Delimitis, A., Yiannoulakis, H., … Triantafyllidis, K. S. (2016). Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Applied Catalysis B: Environmental, 196, 155-173. doi:10.1016/j.apcatb.2016.05.031 es_ES
dc.description.references Lee, Y., Choi, J.-W., Suh, D. J., Ha, J.-M., & Lee, C.-H. (2015). Ketonization of hexanoic acid to diesel-blendable 6-undecanone on the stable zirconia aerogel catalyst. Applied Catalysis A: General, 506, 288-293. doi:10.1016/j.apcata.2015.09.008 es_ES
dc.description.references Baylon, R. A. L., Sun, J., Martin, K. J., Venkitasubramanian, P., & Wang, Y. (2016). Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid–base pairs. Chemical Communications, 52(28), 4975-4978. doi:10.1039/c5cc10528e es_ES
dc.description.references Woo, Y., Lee, Y., Choi, J.-W., Suh, D. J., Lee, C.-H., Ha, J.-M., & Park, M.-J. (2017). Role of Anhydride in the Ketonization of Carboxylic Acid: Kinetic Study on Dimerization of Hexanoic Acid. Industrial & Engineering Chemistry Research, 56(4), 872-880. doi:10.1021/acs.iecr.6b04605 es_ES
dc.description.references Ignatchenko, A. V. (2011). Density Functional Theory Study of Carboxylic Acids Adsorption and Enolization on Monoclinic Zirconia Surfaces. The Journal of Physical Chemistry C, 115(32), 16012-16018. doi:10.1021/jp203381h es_ES
dc.description.references Ignatchenko, A. V., & Kozliak, E. I. (2012). Distinguishing Enolic and Carbonyl Components in the Mechanism of Carboxylic Acid Ketonization on Monoclinic Zirconia. ACS Catalysis, 2(8), 1555-1562. doi:10.1021/cs3002989 es_ES
dc.description.references Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419 es_ES
dc.description.references Oliver-Tomas, B., Gonell, F., Pulido, A., Renz, M., & Boronat, M. (2016). Effect of the Cα substitution on the ketonic decarboxylation of carboxylic acids over m-ZrO2: the role of entropy. Catalysis Science & Technology, 6(14), 5561-5566. doi:10.1039/c6cy00395h es_ES
dc.description.references Wang, S., & Iglesia, E. (2017). Experimental and theoretical assessment of the mechanism and site requirements for ketonization of carboxylic acids on oxides. Journal of Catalysis, 345, 183-206. doi:10.1016/j.jcat.2016.11.006 es_ES
dc.description.references Tosoni, S., & Pacchioni, G. (2016). Acetic acid ketonization on tetragonal zirconia: Role of surface reduction. Journal of Catalysis, 344, 465-473. doi:10.1016/j.jcat.2016.10.002 es_ES
dc.description.references Pacchioni, G. (2014). Ketonization of Carboxylic Acids in Biomass Conversion over TiO2 and ZrO2 Surfaces: A DFT Perspective. ACS Catalysis, 4(9), 2874-2888. doi:10.1021/cs500791w es_ES
dc.description.references Pestman, R., Koster, R. M., van Duijne, A., Pieterse, J. A. Z., & Ponec, V. (1997). Reactions of Carboxylic Acids on Oxides. Journal of Catalysis, 168(2), 265-272. doi:10.1006/jcat.1997.1624 es_ES
dc.description.references Parida, K., & Mishra, H. K. (1999). Catalytic ketonisation of acetic acid over modified zirconia. Journal of Molecular Catalysis A: Chemical, 139(1), 73-80. doi:10.1016/s1381-1169(98)00184-8 es_ES
dc.description.references Orozco, L. M., Renz, M., & Corma, A. (2016). Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes. ChemSusChem, 9(17), 2430-2442. doi:10.1002/cssc.201600654 es_ES
dc.description.references Ketones 1982 es_ES
dc.description.references K. Matsuoka K. Tagawa Ketones 1985 es_ES
dc.description.references Miller, A. L., Cook, N. C., & Whitmore, F. C. (1950). The Ketonic Decarboxylation Reaction1: The Ketonic Decarboxylation of Trimethylacetic Acid2and Isobutyric Acid. Journal of the American Chemical Society, 72(6), 2732-2735. doi:10.1021/ja01162a107 es_ES
dc.description.references Wang, G., Wang, H., Zhang, H., Zhu, Q., Li, C., & Shan, H. (2016). Highly Selective and Stable NiSn/SiO2Catalyst for Isobutane Dehydrogenation: Effects of Sn Addition. ChemCatChem, 8(19), 3137-3145. doi:10.1002/cctc.201600685 es_ES
dc.description.references Estes, D. P., Siddiqi, G., Allouche, F., Kovtunov, K. V., Safonova, O. V., Trigub, A. L., … Copéret, C. (2016). C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs. Journal of the American Chemical Society, 138(45), 14987-14997. doi:10.1021/jacs.6b08705 es_ES
dc.description.references Rodemerck, U., Sokolov, S., Stoyanova, M., Bentrup, U., Linke, D., & Kondratenko, E. V. (2016). Influence of support and kind of VO species on isobutene selectivity and coke deposition in non-oxidative dehydrogenation of isobutane. Journal of Catalysis, 338, 174-183. doi:10.1016/j.jcat.2016.03.003 es_ES
dc.description.references Yokoyama, T., Setoyama, T., Fujita, N., Nakajima, M., Maki, T., & Fujii, K. (1992). Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst. Applied Catalysis A: General, 88(2), 149-161. doi:10.1016/0926-860x(92)80212-u es_ES
dc.description.references Renz, M., & Corma, A. (2004). Ketonic Decarboxylation Catalysed by Weak Bases and Its Application to an Optically Pure Substrate. European Journal of Organic Chemistry, 2004(9), 2036-2039. doi:10.1002/ejoc.200300778 es_ES
dc.description.references Yang, C.-G., Reich, N. W., Shi, Z., & He, C. (2005). Intramolecular Additions of Alcohols and Carboxylic Acids to Inert Olefins Catalyzed by Silver(I) Triflate. Organic Letters, 7(21), 4553-4556. doi:10.1021/ol051065f es_ES
dc.description.references Coffman, D. D., Jenner, E. L., & Lipscomb, R. D. (1958). Syntheses by Free-radical Reactions. I. Oxidative Coupling Effected by Hydroxyl Radicals. Journal of the American Chemical Society, 80(11), 2864-2872. doi:10.1021/ja01544a068 es_ES
dc.description.references Langhals, E., & Langhals, H. (1990). Alkylation of ketones by use of solid KOH in dimethyl sulfoxide. Tetrahedron Letters, 31(6), 859-862. doi:10.1016/s0040-4039(00)94647-1 es_ES
dc.description.references Giera, H., Huisgen, R., Langhals, E., & Polborn, K. (2002). Massive Steric Hindrance in Two‘Thiocarbonyl Ylides’: Cycloadditions with Tetra-Acceptor-Substituted Ethylenesvia Zwitterionic Intermediates. Helvetica Chimica Acta, 85(6), 1523-1545. doi:10.1002/1522-2675(200206)85:6<1523::aid-hlca1523>3.0.co;2-o es_ES
dc.description.references Stothers, J. B., & Tan, C. T. (1974). 13C Nuclear Magnetic Resonance Studies. 34. The 13C Spectra of Several Methylcyclopentanones and -cyclohexanones. Canadian Journal of Chemistry, 52(2), 308-314. doi:10.1139/v74-050 es_ES
dc.description.references Takenaka, K., Mohanta, S. C., Patil, M. L., Rao, C. V. L., Takizawa, S., Suzuki, T., & Sasai, H. (2010). Enantioselective Wacker-Type Cyclization of 2-Alkenyl-1,3-diketones Promoted by Pd-SPRIX Catalyst. Organic Letters, 12(15), 3480-3483. doi:10.1021/ol1013069 es_ES
dc.description.references Dauben, W. G., & Michno, D. M. (1977). Direct oxidation of tertiary allylic alcohols. A simple and effective method for alkylative carbonyl transposition. The Journal of Organic Chemistry, 42(4), 682-685. doi:10.1021/jo00424a023 es_ES
dc.description.references Vatèle, J.-M. (2010). Lewis acid-catalyzed oxidative rearrangement of tertiary allylic alcohols mediated by TEMPO. Tetrahedron, 66(4), 904-912. doi:10.1016/j.tet.2009.11.104 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem