Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0
Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.eb
Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784
[+]
Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0
Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.eb
Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784
Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2009). Brain activity during the memorization of visual scenes from TV commercials: An application of high resolution EEG and steady state somatosensory evoked potentials technologies. Journal of Physiology-Paris, 103(6), 333-341. doi:10.1016/j.jphysparis.2009.07.002
Baack, D. W., Wilson, R. T., & Till, B. D. (2008). Creativity and Memory Effects: Recall, Recognition, and an Exploration of Nontraditional Media. Journal of Advertising, 37(4), 85-94. doi:10.2753/joa0091-3367370407
Bellman, S., Murphy, J., Treleaven-Hassard, S., O’Farrell, J., Qiu, L., & Varan, D. (2013). Using Internet Behavior to Deliver Relevant Television Commercials. Journal of Interactive Marketing, 27(2), 130-140. doi:10.1016/j.intmar.2012.12.001
Bigné, E. (2016). Frontiers in research in business: Will you be in? European Journal of Management and Business Economics, 25(3), 89-90. doi:10.1016/j.redeen.2016.09.001
Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119
Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38(1), 1-13. doi:10.1016/j.compbiomed.2007.06.003
Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482-492. doi:10.1509/jmr.13.0572
Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., & Lang, P. J. (2011). Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 48(11), 1544-1553. doi:10.1111/j.1469-8986.2011.01223.x
Castiglioni, P., & Di Rienzo, M. (s. f.). On the evaluation of heart rate spectra: the Lomb periodogram. Computers in Cardiology 1996. doi:10.1109/cic.1996.542584
Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07. doi:10.1145/1298306.1298309
Chen, L., Zhou, Y., & Chiu, D. M. (2014). A lifetime model of online video popularity. 2014 23rd International Conference on Computer Communication and Networks (ICCCN). doi:10.1109/icccn.2014.6911774
Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). From the eyes and the heart: a novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00579
Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074
Couwenberg, L. E., Boksem, M. A. S., Dietvorst, R. C., Worm, L., Verbeke, W. J. M. I., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi:10.1016/j.ijresmar.2016.10.005
Curry, B., & Moutinho, L. (1993). Neural Networks in Marketing: Modelling Consumer Responses to Advertising Stimuli. European Journal of Marketing, 27(7), 5-20. doi:10.1108/03090569310040325
Daugherty, T., Hoffman, E., & Kennedy, K. (2016). Research in reverse: Ad testing using an inductive consumer neuroscience approach. Journal of Business Research, 69(8), 3168-3176. doi:10.1016/j.jbusres.2015.12.005
Davidson, R. J. (2004). What does the prefrontal cortex «do» in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-234. doi:10.1016/j.biopsycho.2004.03.008
Deitz, G. D., Royne, M. B., Peasley, M. C., & Huang, J. «Coco». (2016). EEG-Based Measures versus Panel Ratings: Predicting Social-Media Based Behavioral Responses to Super Bowl Ads. Journal of Advertising Research, 56(2), 217. doi:10.2501/jar-2016-030
Demarzo, M. M. P., Montero-Marin, J., Stein, P. K., Cebolla, A. s, Provinciale, J. G., & GarcÃa-Campayo, J. (2014). Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00105
Santos, R. D. O. J. dos, Oliveira, J. H. C. de, Rocha, J. B., & Giraldi, J. D. M. E. (2015). Eye Tracking in Neuromarketing: A Research Agenda for Marketing Studies. International Journal of Psychological Studies, 7(1). doi:10.5539/ijps.v7n1p32
Elsen, M., Pieters, R., & Wedel, M. (2016). Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 53(4), 563-579. doi:10.1509/jmr.13.0398
Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2(1). doi:10.1186/1471-2288-2-8
Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., & Dick, T. E. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113(2), 297-306. doi:10.1152/japplphysiol.01377.2010
Fjorback, L. O., Arendt, M., Ørnbøl, E., Fink, P., & Walach, H. (2011). Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy - a systematic review of randomized controlled trials. Acta Psychiatrica Scandinavica, 124(2), 102-119. doi:10.1111/j.1600-0447.2011.01704.x
Gao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2009). Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topography, 23(1), 105-114. doi:10.1007/s10548-009-0131-4
Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723-728. doi:10.1016/j.paid.2010.06.015
Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks. Proceedings of the symposium on Eye tracking research & applications - ETRA ’02. doi:10.1145/507072.507082
Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness and Cognition, 17(2), 484-495. doi:10.1016/j.concog.2008.03.019
Guerreiro, J., Rita, P., & Trigueiros, D. (2015). Attention, emotions and cause-related marketing effectiveness. European Journal of Marketing, 49(11/12), 1728-1750. doi:10.1108/ejm-09-2014-0543
Ha, L. (2008). Online Advertising Research in Advertising Journals: A Review. Journal of Current Issues & Research in Advertising, 30(1), 31-48. doi:10.1080/10641734.2008.10505236
Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84(3), 451-462. doi:10.1016/j.biopsycho.2009.08.010
Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. doi:10.3758/s13428-011-0104-x
Kent, R. J., & Allen, C. T. (1994). Competitive Interference Effects in Consumer Memory for Advertising: The Role of Brand Familiarity. Journal of Marketing, 58(3), 97. doi:10.2307/1252313
Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. doi:10.1016/j.eswa.2012.12.095
Kim, K., Hayes, J. L., Avant, J. A., & Reid, L. N. (2014). Trends in Advertising Research: A Longitudinal Analysis of Leading Advertising, Marketing, and Communication Journals, 1980 to 2010. Journal of Advertising, 43(3), 296-316. doi:10.1080/00913367.2013.857620
Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549
Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple «buy buttons» in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128. doi:10.1016/j.neuroimage.2016.05.021
Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999). The effects of production pacing and arousing content on the information processing of television messages. Journal of Broadcasting & Electronic Media, 43(4), 451-475. doi:10.1080/08838159909364504
Lee, J., & Ahn, J.-H. (2012). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. doi:10.2753/jec1086-4415170105
McAlister, L., Srinivasan, R., Jindal, N., & Cannella, A. A. (2016). Advertising Effectiveness: The Moderating Effect of Firm Strategy. Journal of Marketing Research, 53(2), 207-224. doi:10.1509/jmr.13.0285
McDuff, D., Kaliouby, R. E., Cohn, J. F., & Picard, R. W. (2015). Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads. IEEE Transactions on Affective Computing, 6(3), 223-235. doi:10.1109/taffc.2014.2384198
Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240. doi:10.1111/j.1469-8986.2010.01061.x
Babiloni, F. (2012). Consumer Nueroscience: A New Area of Study for Biomedical Engineers. IEEE Pulse, 3(3), 21-23. doi:10.1109/mpul.2012.2189166
Mould, D., Mandryk, R. L., & Li, H. (2012). Emotional response and visual attention to non-photorealistic images. Computers & Graphics, 36(6), 658-672. doi:10.1016/j.cag.2012.03.039
Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. Journal of Visualized Experiments, (126). doi:10.3791/55872
Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/tbme.1985.325532
Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765-781. doi:10.1287/mnsc.48.6.765.192
Piskorski, J., & Guzik, P. (2007). Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement, 28(3), 287-300. doi:10.1088/0967-3334/28/3/005
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039
Ruanguttamanun, C. (2014). Neuromarketing: I Put Myself into a fMRI Scanner and Realized that I love Louis Vuitton Ads. Procedia - Social and Behavioral Sciences, 148, 211-218. doi:10.1016/j.sbspro.2014.07.036
Shehu, E., Bijmolt, T. H. A., & Clement, M. (2016). Effects of Likeability Dynamics on Consumers’ Intention to Share Online Video Advertisements. Journal of Interactive Marketing, 35, 27-43. doi:10.1016/j.intmar.2016.01.001
Smith, A. N., Fischer, E., & Yongjian, C. (2012). How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102-113. doi:10.1016/j.intmar.2012.01.002
Strach, P., Zuber, K., Fowler, E. F., Ridout, T. N., & Searles, K. (2015). In a Different Voice? Explaining the Use of Men and Women as Voice-Over Announcers in Political Advertising. Political Communication, 32(2), 183-205. doi:10.1080/10584609.2014.914614
Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868
Tomkovick, C., Yelkur, R., & Christians, L. (2001). The USA’s biggest marketing event keeps getting bigger: an in-depth look at Super Bowl advertising in the 1990s. Journal of Marketing Communications, 7(2), 89-108. doi:10.1080/13527260121725
Vakratsas, D., & Ambler, T. (1999). How Advertising Works: What Do We Really Know? Journal of Marketing, 63(1), 26. doi:10.2307/1251999
Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5. doi:10.3389/fneng.2012.00003
Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., & Barbieri, R. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4(1). doi:10.1038/srep04998
Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers’ Measures of Advertising Effectiveness? Journal of Advertising Research, 55(2), 176-191. doi:10.2501/jar-55-2-176-191
Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., … Babiloni, F. (2010). EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements. Computational Intelligence and Neuroscience, 2010, 1-7. doi:10.1155/2010/985867
Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., … Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/912981
Vecchiato, G., Susac, A., Margeti, S., De Vico Fallani, F., Maglione, A. G., Supek, S., … Babiloni, F. (2012). High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 26(2), 303-314. doi:10.1007/s10548-012-0259-5
Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., … Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49(5), 579-583. doi:10.1007/s11517-011-0747-x
Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436-452. doi:10.1509/jmr.13.0593
Wackermann, J., Lehmann, D., Michel, C. M., & Strik, W. K. (1993). Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. International Journal of Psychophysiology, 14(3), 269-283. doi:10.1016/0167-8760(93)90041-m
Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97-121. doi:10.1509/jm.15.0413
Werkle-Bergner, M., Müller, V., Li, S.-C., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience & Biobehavioral Reviews, 30(6), 839-854. doi:10.1016/j.neubiorev.2006.06.009
West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370-391. doi:10.1287/mksc.16.4.370
Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035-6058. doi:10.1007/s11042-015-3206-0
[-]