Mostrar el registro sencillo del ítem
dc.contributor.author | Guixeres Provinciale, Jaime | es_ES |
dc.contributor.author | Bigné-Alcañiz, Enrique | es_ES |
dc.contributor.author | Ausin-Azofra, Jose Manuel | es_ES |
dc.contributor.author | Alcañiz Raya, Mariano Luis | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Fuentes-Hurtado, Félix José | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2020-07-18T03:31:31Z | |
dc.date.available | 2020-07-18T03:31:31Z | |
dc.date.issued | 2017-10-31 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148236 | |
dc.description.abstract | [EN] The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants were exposed to 8 relevant TV Super Bowl commercials. Correlations between neurophysiological-based metrics, ad recall, ad liking, the ACE metrix score and the number of views on YouTube during a year were investigated. Our findings suggest a significant correlation between neuroscience metrics and self-reported of ad effectiveness and the direct number of views on the YouTube channel. In addition, and using an artificial neural network based on neuroscience metrics, the model classifies (82.9% of average accuracy) and estimate the number of online views (mean error of 0.199). The results highlight the validity of neuromarketing-based techniques for predicting the success of advertising responses. Practitioners can consider the proposed methodology at the design stages of advertising content, thus enhancing advertising effectiveness. The study pioneers the use of neurophysiological methods in predicting advertising success in a digital context. This is the first article that has examined whether these measures could actually be used for predicting views for advertising on YouTube. | es_ES |
dc.description.sponsorship | This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Polytechnic University of Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Psychology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Neuromarketing | es_ES |
dc.subject | YouTube | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | Eye tracking | es_ES |
dc.subject | Heart rate variability | es_ES |
dc.subject | Brain response | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpsyg.2017.01808 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà | es_ES |
dc.description.bibliographicCitation | Guixeres Provinciale, J.; Bigné-Alcañiz, E.; Ausin-Azofra, JM.; Alcañiz Raya, ML.; Colomer, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V. (2017). Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising. Frontiers in Psychology. 8:1-14. https://doi.org/10.3389/fpsyg.2017.01808 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpsyg.2017.01808 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 1664-1078 | es_ES |
dc.identifier.pmid | 29163251 | es_ES |
dc.identifier.pmcid | PMC5671759 | es_ES |
dc.relation.pasarela | S\345791 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0 | es_ES |
dc.description.references | Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.eb | es_ES |
dc.description.references | Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784 | es_ES |
dc.description.references | Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2009). Brain activity during the memorization of visual scenes from TV commercials: An application of high resolution EEG and steady state somatosensory evoked potentials technologies. Journal of Physiology-Paris, 103(6), 333-341. doi:10.1016/j.jphysparis.2009.07.002 | es_ES |
dc.description.references | Baack, D. W., Wilson, R. T., & Till, B. D. (2008). Creativity and Memory Effects: Recall, Recognition, and an Exploration of Nontraditional Media. Journal of Advertising, 37(4), 85-94. doi:10.2753/joa0091-3367370407 | es_ES |
dc.description.references | Bellman, S., Murphy, J., Treleaven-Hassard, S., O’Farrell, J., Qiu, L., & Varan, D. (2013). Using Internet Behavior to Deliver Relevant Television Commercials. Journal of Interactive Marketing, 27(2), 130-140. doi:10.1016/j.intmar.2012.12.001 | es_ES |
dc.description.references | Bigné, E. (2016). Frontiers in research in business: Will you be in? European Journal of Management and Business Economics, 25(3), 89-90. doi:10.1016/j.redeen.2016.09.001 | es_ES |
dc.description.references | Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119 | es_ES |
dc.description.references | Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38(1), 1-13. doi:10.1016/j.compbiomed.2007.06.003 | es_ES |
dc.description.references | Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482-492. doi:10.1509/jmr.13.0572 | es_ES |
dc.description.references | Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., & Lang, P. J. (2011). Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 48(11), 1544-1553. doi:10.1111/j.1469-8986.2011.01223.x | es_ES |
dc.description.references | Castiglioni, P., & Di Rienzo, M. (s. f.). On the evaluation of heart rate spectra: the Lomb periodogram. Computers in Cardiology 1996. doi:10.1109/cic.1996.542584 | es_ES |
dc.description.references | Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07. doi:10.1145/1298306.1298309 | es_ES |
dc.description.references | Chen, L., Zhou, Y., & Chiu, D. M. (2014). A lifetime model of online video popularity. 2014 23rd International Conference on Computer Communication and Networks (ICCCN). doi:10.1109/icccn.2014.6911774 | es_ES |
dc.description.references | Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). From the eyes and the heart: a novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00579 | es_ES |
dc.description.references | Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074 | es_ES |
dc.description.references | Couwenberg, L. E., Boksem, M. A. S., Dietvorst, R. C., Worm, L., Verbeke, W. J. M. I., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi:10.1016/j.ijresmar.2016.10.005 | es_ES |
dc.description.references | Curry, B., & Moutinho, L. (1993). Neural Networks in Marketing: Modelling Consumer Responses to Advertising Stimuli. European Journal of Marketing, 27(7), 5-20. doi:10.1108/03090569310040325 | es_ES |
dc.description.references | Daugherty, T., Hoffman, E., & Kennedy, K. (2016). Research in reverse: Ad testing using an inductive consumer neuroscience approach. Journal of Business Research, 69(8), 3168-3176. doi:10.1016/j.jbusres.2015.12.005 | es_ES |
dc.description.references | Davidson, R. J. (2004). What does the prefrontal cortex «do» in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-234. doi:10.1016/j.biopsycho.2004.03.008 | es_ES |
dc.description.references | Deitz, G. D., Royne, M. B., Peasley, M. C., & Huang, J. «Coco». (2016). EEG-Based Measures versus Panel Ratings: Predicting Social-Media Based Behavioral Responses to Super Bowl Ads. Journal of Advertising Research, 56(2), 217. doi:10.2501/jar-2016-030 | es_ES |
dc.description.references | Demarzo, M. M. P., Montero-Marin, J., Stein, P. K., Cebolla, A. s, Provinciale, J. G., & GarcÃa-Campayo, J. (2014). Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00105 | es_ES |
dc.description.references | Santos, R. D. O. J. dos, Oliveira, J. H. C. de, Rocha, J. B., & Giraldi, J. D. M. E. (2015). Eye Tracking in Neuromarketing: A Research Agenda for Marketing Studies. International Journal of Psychological Studies, 7(1). doi:10.5539/ijps.v7n1p32 | es_ES |
dc.description.references | Elsen, M., Pieters, R., & Wedel, M. (2016). Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 53(4), 563-579. doi:10.1509/jmr.13.0398 | es_ES |
dc.description.references | Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2(1). doi:10.1186/1471-2288-2-8 | es_ES |
dc.description.references | Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., & Dick, T. E. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113(2), 297-306. doi:10.1152/japplphysiol.01377.2010 | es_ES |
dc.description.references | Fjorback, L. O., Arendt, M., Ørnbøl, E., Fink, P., & Walach, H. (2011). Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy - a systematic review of randomized controlled trials. Acta Psychiatrica Scandinavica, 124(2), 102-119. doi:10.1111/j.1600-0447.2011.01704.x | es_ES |
dc.description.references | Gao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2009). Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topography, 23(1), 105-114. doi:10.1007/s10548-009-0131-4 | es_ES |
dc.description.references | Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723-728. doi:10.1016/j.paid.2010.06.015 | es_ES |
dc.description.references | Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks. Proceedings of the symposium on Eye tracking research & applications - ETRA ’02. doi:10.1145/507072.507082 | es_ES |
dc.description.references | Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness and Cognition, 17(2), 484-495. doi:10.1016/j.concog.2008.03.019 | es_ES |
dc.description.references | Guerreiro, J., Rita, P., & Trigueiros, D. (2015). Attention, emotions and cause-related marketing effectiveness. European Journal of Marketing, 49(11/12), 1728-1750. doi:10.1108/ejm-09-2014-0543 | es_ES |
dc.description.references | Ha, L. (2008). Online Advertising Research in Advertising Journals: A Review. Journal of Current Issues & Research in Advertising, 30(1), 31-48. doi:10.1080/10641734.2008.10505236 | es_ES |
dc.description.references | Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84(3), 451-462. doi:10.1016/j.biopsycho.2009.08.010 | es_ES |
dc.description.references | Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. doi:10.3758/s13428-011-0104-x | es_ES |
dc.description.references | Kent, R. J., & Allen, C. T. (1994). Competitive Interference Effects in Consumer Memory for Advertising: The Role of Brand Familiarity. Journal of Marketing, 58(3), 97. doi:10.2307/1252313 | es_ES |
dc.description.references | Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. doi:10.1016/j.eswa.2012.12.095 | es_ES |
dc.description.references | Kim, K., Hayes, J. L., Avant, J. A., & Reid, L. N. (2014). Trends in Advertising Research: A Longitudinal Analysis of Leading Advertising, Marketing, and Communication Journals, 1980 to 2010. Journal of Advertising, 43(3), 296-316. doi:10.1080/00913367.2013.857620 | es_ES |
dc.description.references | Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549 | es_ES |
dc.description.references | Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple «buy buttons» in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128. doi:10.1016/j.neuroimage.2016.05.021 | es_ES |
dc.description.references | Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999). The effects of production pacing and arousing content on the information processing of television messages. Journal of Broadcasting & Electronic Media, 43(4), 451-475. doi:10.1080/08838159909364504 | es_ES |
dc.description.references | Lee, J., & Ahn, J.-H. (2012). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. doi:10.2753/jec1086-4415170105 | es_ES |
dc.description.references | McAlister, L., Srinivasan, R., Jindal, N., & Cannella, A. A. (2016). Advertising Effectiveness: The Moderating Effect of Firm Strategy. Journal of Marketing Research, 53(2), 207-224. doi:10.1509/jmr.13.0285 | es_ES |
dc.description.references | McDuff, D., Kaliouby, R. E., Cohn, J. F., & Picard, R. W. (2015). Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads. IEEE Transactions on Affective Computing, 6(3), 223-235. doi:10.1109/taffc.2014.2384198 | es_ES |
dc.description.references | Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240. doi:10.1111/j.1469-8986.2010.01061.x | es_ES |
dc.description.references | Babiloni, F. (2012). Consumer Nueroscience: A New Area of Study for Biomedical Engineers. IEEE Pulse, 3(3), 21-23. doi:10.1109/mpul.2012.2189166 | es_ES |
dc.description.references | Mould, D., Mandryk, R. L., & Li, H. (2012). Emotional response and visual attention to non-photorealistic images. Computers & Graphics, 36(6), 658-672. doi:10.1016/j.cag.2012.03.039 | es_ES |
dc.description.references | Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. Journal of Visualized Experiments, (126). doi:10.3791/55872 | es_ES |
dc.description.references | Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/tbme.1985.325532 | es_ES |
dc.description.references | Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765-781. doi:10.1287/mnsc.48.6.765.192 | es_ES |
dc.description.references | Piskorski, J., & Guzik, P. (2007). Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement, 28(3), 287-300. doi:10.1088/0967-3334/28/3/005 | es_ES |
dc.description.references | Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 | es_ES |
dc.description.references | Ruanguttamanun, C. (2014). Neuromarketing: I Put Myself into a fMRI Scanner and Realized that I love Louis Vuitton Ads. Procedia - Social and Behavioral Sciences, 148, 211-218. doi:10.1016/j.sbspro.2014.07.036 | es_ES |
dc.description.references | Shehu, E., Bijmolt, T. H. A., & Clement, M. (2016). Effects of Likeability Dynamics on Consumers’ Intention to Share Online Video Advertisements. Journal of Interactive Marketing, 35, 27-43. doi:10.1016/j.intmar.2016.01.001 | es_ES |
dc.description.references | Smith, A. N., Fischer, E., & Yongjian, C. (2012). How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102-113. doi:10.1016/j.intmar.2012.01.002 | es_ES |
dc.description.references | Strach, P., Zuber, K., Fowler, E. F., Ridout, T. N., & Searles, K. (2015). In a Different Voice? Explaining the Use of Men and Women as Voice-Over Announcers in Political Advertising. Political Communication, 32(2), 183-205. doi:10.1080/10584609.2014.914614 | es_ES |
dc.description.references | Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868 | es_ES |
dc.description.references | Tomkovick, C., Yelkur, R., & Christians, L. (2001). The USA’s biggest marketing event keeps getting bigger: an in-depth look at Super Bowl advertising in the 1990s. Journal of Marketing Communications, 7(2), 89-108. doi:10.1080/13527260121725 | es_ES |
dc.description.references | Vakratsas, D., & Ambler, T. (1999). How Advertising Works: What Do We Really Know? Journal of Marketing, 63(1), 26. doi:10.2307/1251999 | es_ES |
dc.description.references | Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5. doi:10.3389/fneng.2012.00003 | es_ES |
dc.description.references | Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., & Barbieri, R. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4(1). doi:10.1038/srep04998 | es_ES |
dc.description.references | Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers’ Measures of Advertising Effectiveness? Journal of Advertising Research, 55(2), 176-191. doi:10.2501/jar-55-2-176-191 | es_ES |
dc.description.references | Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., … Babiloni, F. (2010). EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements. Computational Intelligence and Neuroscience, 2010, 1-7. doi:10.1155/2010/985867 | es_ES |
dc.description.references | Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., … Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/912981 | es_ES |
dc.description.references | Vecchiato, G., Susac, A., Margeti, S., De Vico Fallani, F., Maglione, A. G., Supek, S., … Babiloni, F. (2012). High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 26(2), 303-314. doi:10.1007/s10548-012-0259-5 | es_ES |
dc.description.references | Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., … Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49(5), 579-583. doi:10.1007/s11517-011-0747-x | es_ES |
dc.description.references | Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436-452. doi:10.1509/jmr.13.0593 | es_ES |
dc.description.references | Wackermann, J., Lehmann, D., Michel, C. M., & Strik, W. K. (1993). Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. International Journal of Psychophysiology, 14(3), 269-283. doi:10.1016/0167-8760(93)90041-m | es_ES |
dc.description.references | Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97-121. doi:10.1509/jm.15.0413 | es_ES |
dc.description.references | Werkle-Bergner, M., Müller, V., Li, S.-C., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience & Biobehavioral Reviews, 30(6), 839-854. doi:10.1016/j.neubiorev.2006.06.009 | es_ES |
dc.description.references | West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370-391. doi:10.1287/mksc.16.4.370 | es_ES |
dc.description.references | Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035-6058. doi:10.1007/s11042-015-3206-0 | es_ES |