- -

Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guixeres Provinciale, Jaime es_ES
dc.contributor.author Bigné-Alcañiz, Enrique es_ES
dc.contributor.author Ausin-Azofra, Jose Manuel es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Fuentes-Hurtado, Félix José es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.date.accessioned 2020-07-18T03:31:31Z
dc.date.available 2020-07-18T03:31:31Z
dc.date.issued 2017-10-31 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148236
dc.description.abstract [EN] The purpose of the present study is to investigate whether the effectiveness of a new ad on digital channels (YouTube) can be predicted by using neural networks and neuroscience-based metrics (brain response, heart rate variability and eye tracking). Neurophysiological records from 35 participants were exposed to 8 relevant TV Super Bowl commercials. Correlations between neurophysiological-based metrics, ad recall, ad liking, the ACE metrix score and the number of views on YouTube during a year were investigated. Our findings suggest a significant correlation between neuroscience metrics and self-reported of ad effectiveness and the direct number of views on the YouTube channel. In addition, and using an artificial neural network based on neuroscience metrics, the model classifies (82.9% of average accuracy) and estimate the number of online views (mean error of 0.199). The results highlight the validity of neuromarketing-based techniques for predicting the success of advertising responses. Practitioners can consider the proposed methodology at the design stages of advertising content, thus enhancing advertising effectiveness. The study pioneers the use of neurophysiological methods in predicting advertising success in a digital context. This is the first article that has examined whether these measures could actually be used for predicting views for advertising on YouTube. es_ES
dc.description.sponsorship This work has been supported by the Heineken Endowed Chair in Neuromarketing at the Polytechnic University of Valencia in order to research and apply new technologies and neuroscience in communication, distribution and consumption fields. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Psychology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Neuromarketing es_ES
dc.subject YouTube es_ES
dc.subject Artificial neural networks es_ES
dc.subject Eye tracking es_ES
dc.subject Heart rate variability es_ES
dc.subject Brain response es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpsyg.2017.01808 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.description.bibliographicCitation Guixeres Provinciale, J.; Bigné-Alcañiz, E.; Ausin-Azofra, JM.; Alcañiz Raya, ML.; Colomer, A.; Fuentes-Hurtado, FJ.; Naranjo Ornedo, V. (2017). Consumer Neuroscience-Based Metrics Predict Recall, Liking and Viewing Rates in Online Advertising. Frontiers in Psychology. 8:1-14. https://doi.org/10.3389/fpsyg.2017.01808 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpsyg.2017.01808 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 1664-1078 es_ES
dc.identifier.pmid 29163251 es_ES
dc.identifier.pmcid PMC5671759 es_ES
dc.relation.pasarela S\345791 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031-1051. doi:10.1007/s11517-006-0119-0 es_ES
dc.description.references Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of Evoked EEG Synchronization and Desynchronization in Conditions of Emotional Activation in Humans: Temporal and Topographic Characteristics. Neuroscience and Behavioral Physiology, 34(8), 859-867. doi:10.1023/b:neab.0000038139.39812.eb es_ES
dc.description.references Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2008). Neural Basis for Brain Responses to TV Commercials: A High-Resolution EEG Study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 522-531. doi:10.1109/tnsre.2008.2009784 es_ES
dc.description.references Astolfi, L., Fallani, F. D. V., Cincotti, F., Mattia, D., Bianchi, L., Marciani, M. G., … Babiloni, F. (2009). Brain activity during the memorization of visual scenes from TV commercials: An application of high resolution EEG and steady state somatosensory evoked potentials technologies. Journal of Physiology-Paris, 103(6), 333-341. doi:10.1016/j.jphysparis.2009.07.002 es_ES
dc.description.references Baack, D. W., Wilson, R. T., & Till, B. D. (2008). Creativity and Memory Effects: Recall, Recognition, and an Exploration of Nontraditional Media. Journal of Advertising, 37(4), 85-94. doi:10.2753/joa0091-3367370407 es_ES
dc.description.references Bellman, S., Murphy, J., Treleaven-Hassard, S., O’Farrell, J., Qiu, L., & Varan, D. (2013). Using Internet Behavior to Deliver Relevant Television Commercials. Journal of Interactive Marketing, 27(2), 130-140. doi:10.1016/j.intmar.2012.12.001 es_ES
dc.description.references Bigné, E. (2016). Frontiers in research in business: Will you be in? European Journal of Management and Business Economics, 25(3), 89-90. doi:10.1016/j.redeen.2016.09.001 es_ES
dc.description.references Bigné, E., Llinares, C., & Torrecilla, C. (2016). Elapsed time on first buying triggers brand choices within a category: A virtual reality-based study. Journal of Business Research, 69(4), 1423-1427. doi:10.1016/j.jbusres.2015.10.119 es_ES
dc.description.references Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38(1), 1-13. doi:10.1016/j.compbiomed.2007.06.003 es_ES
dc.description.references Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482-492. doi:10.1509/jmr.13.0572 es_ES
dc.description.references Bradley, M. M., Houbova, P., Miccoli, L., Costa, V. D., & Lang, P. J. (2011). Scan patterns when viewing natural scenes: Emotion, complexity, and repetition. Psychophysiology, 48(11), 1544-1553. doi:10.1111/j.1469-8986.2011.01223.x es_ES
dc.description.references Castiglioni, P., & Di Rienzo, M. (s. f.). On the evaluation of heart rate spectra: the Lomb periodogram. Computers in Cardiology 1996. doi:10.1109/cic.1996.542584 es_ES
dc.description.references Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., & Moon, S. (2007). I tube, you tube, everybody tubes. Proceedings of the 7th ACM SIGCOMM conference on Internet measurement - IMC ’07. doi:10.1145/1298306.1298309 es_ES
dc.description.references Chen, L., Zhou, Y., & Chiu, D. M. (2014). A lifetime model of online video popularity. 2014 23rd International Conference on Computer Communication and Networks (ICCCN). doi:10.1109/icccn.2014.6911774 es_ES
dc.description.references Christoforou, C., Christou-Champi, S., Constantinidou, F., & Theodorou, M. (2015). From the eyes and the heart: a novel eye-gaze metric that predicts video preferences of a large audience. Frontiers in Psychology, 6. doi:10.3389/fpsyg.2015.00579 es_ES
dc.description.references Colomer Granero, A., Fuentes-Hurtado, F., Naranjo Ornedo, V., Guixeres Provinciale, J., Ausín, J. M., & Alcañiz Raya, M. (2016). A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Frontiers in Computational Neuroscience, 10. doi:10.3389/fncom.2016.00074 es_ES
dc.description.references Couwenberg, L. E., Boksem, M. A. S., Dietvorst, R. C., Worm, L., Verbeke, W. J. M. I., & Smidts, A. (2017). Neural responses to functional and experiential ad appeals: Explaining ad effectiveness. International Journal of Research in Marketing, 34(2), 355-366. doi:10.1016/j.ijresmar.2016.10.005 es_ES
dc.description.references Curry, B., & Moutinho, L. (1993). Neural Networks in Marketing: Modelling Consumer Responses to Advertising Stimuli. European Journal of Marketing, 27(7), 5-20. doi:10.1108/03090569310040325 es_ES
dc.description.references Daugherty, T., Hoffman, E., & Kennedy, K. (2016). Research in reverse: Ad testing using an inductive consumer neuroscience approach. Journal of Business Research, 69(8), 3168-3176. doi:10.1016/j.jbusres.2015.12.005 es_ES
dc.description.references Davidson, R. J. (2004). What does the prefrontal cortex «do» in affect: perspectives on frontal EEG asymmetry research. Biological Psychology, 67(1-2), 219-234. doi:10.1016/j.biopsycho.2004.03.008 es_ES
dc.description.references Deitz, G. D., Royne, M. B., Peasley, M. C., & Huang, J. «Coco». (2016). EEG-Based Measures versus Panel Ratings: Predicting Social-Media Based Behavioral Responses to Super Bowl Ads. Journal of Advertising Research, 56(2), 217. doi:10.2501/jar-2016-030 es_ES
dc.description.references Demarzo, M. M. P., Montero-Marin, J., Stein, P. K., Cebolla, A. s, Provinciale, J. G., & García-Campayo, J. (2014). Mindfulness may both moderate and mediate the effect of physical fitness on cardiovascular responses to stress: a speculative hypothesis. Frontiers in Physiology, 5. doi:10.3389/fphys.2014.00105 es_ES
dc.description.references Santos, R. D. O. J. dos, Oliveira, J. H. C. de, Rocha, J. B., & Giraldi, J. D. M. E. (2015). Eye Tracking in Neuromarketing: A Research Agenda for Marketing Studies. International Journal of Psychological Studies, 7(1). doi:10.5539/ijps.v7n1p32 es_ES
dc.description.references Elsen, M., Pieters, R., & Wedel, M. (2016). Thin Slice Impressions: How Advertising Evaluation Depends on Exposure Duration. Journal of Marketing Research, 53(4), 563-579. doi:10.1509/jmr.13.0398 es_ES
dc.description.references Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment? BMC Medical Research Methodology, 2(1). doi:10.1186/1471-2288-2-8 es_ES
dc.description.references Fishman, M., Jacono, F. J., Park, S., Jamasebi, R., Thungtong, A., Loparo, K. A., & Dick, T. E. (2012). A method for analyzing temporal patterns of variability of a time series from Poincaré plots. Journal of Applied Physiology, 113(2), 297-306. doi:10.1152/japplphysiol.01377.2010 es_ES
dc.description.references Fjorback, L. O., Arendt, M., Ørnbøl, E., Fink, P., & Walach, H. (2011). Mindfulness-Based Stress Reduction and Mindfulness-Based Cognitive Therapy - a systematic review of randomized controlled trials. Acta Psychiatrica Scandinavica, 124(2), 102-119. doi:10.1111/j.1600-0447.2011.01704.x es_ES
dc.description.references Gao, J. F., Yang, Y., Lin, P., Wang, P., & Zheng, C. X. (2009). Automatic Removal of Eye-Movement and Blink Artifacts from EEG Signals. Brain Topography, 23(1), 105-114. doi:10.1007/s10548-009-0131-4 es_ES
dc.description.references Geisler, F. C. M., Vennewald, N., Kubiak, T., & Weber, H. (2010). The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723-728. doi:10.1016/j.paid.2010.06.015 es_ES
dc.description.references Goldberg, J. H., Stimson, M. J., Lewenstein, M., Scott, N., & Wichansky, A. M. (2002). Eye tracking in web search tasks. Proceedings of the symposium on Eye tracking research & applications - ETRA ’02. doi:10.1145/507072.507082 es_ES
dc.description.references Grandjean, D., Sander, D., & Scherer, K. R. (2008). Conscious emotional experience emerges as a function of multilevel, appraisal-driven response synchronization. Consciousness and Cognition, 17(2), 484-495. doi:10.1016/j.concog.2008.03.019 es_ES
dc.description.references Guerreiro, J., Rita, P., & Trigueiros, D. (2015). Attention, emotions and cause-related marketing effectiveness. European Journal of Marketing, 49(11/12), 1728-1750. doi:10.1108/ejm-09-2014-0543 es_ES
dc.description.references Ha, L. (2008). Online Advertising Research in Advertising Journals: A Review. Journal of Current Issues & Research in Advertising, 30(1), 31-48. doi:10.1080/10641734.2008.10505236 es_ES
dc.description.references Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84(3), 451-462. doi:10.1016/j.biopsycho.2009.08.010 es_ES
dc.description.references Holmqvist, K., Andrà, C., Lindström, P., Arzarello, F., Ferrara, F., Robutti, O., & Sabena, C. (2011). A method for quantifying focused versus overview behavior in AOI sequences. Behavior Research Methods, 43(4), 987-998. doi:10.3758/s13428-011-0104-x es_ES
dc.description.references Kent, R. J., & Allen, C. T. (1994). Competitive Interference Effects in Consumer Memory for Advertising: The Role of Brand Familiarity. Journal of Marketing, 58(3), 97. doi:10.2307/1252313 es_ES
dc.description.references Khushaba, R. N., Wise, C., Kodagoda, S., Louviere, J., Kahn, B. E., & Townsend, C. (2013). Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Systems with Applications, 40(9), 3803-3812. doi:10.1016/j.eswa.2012.12.095 es_ES
dc.description.references Kim, K., Hayes, J. L., Avant, J. A., & Reid, L. N. (2014). Trends in Advertising Research: A Longitudinal Analysis of Leading Advertising, Marketing, and Communication Journals, 1980 to 2010. Journal of Advertising, 43(3), 296-316. doi:10.1080/00913367.2013.857620 es_ES
dc.description.references Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8. doi:10.3389/fnhum.2014.00549 es_ES
dc.description.references Kühn, S., Strelow, E., & Gallinat, J. (2016). Multiple «buy buttons» in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI. NeuroImage, 136, 122-128. doi:10.1016/j.neuroimage.2016.05.021 es_ES
dc.description.references Lang, A., Bolls, P., Potter, R. F., & Kawahara, K. (1999). The effects of production pacing and arousing content on the information processing of television messages. Journal of Broadcasting & Electronic Media, 43(4), 451-475. doi:10.1080/08838159909364504 es_ES
dc.description.references Lee, J., & Ahn, J.-H. (2012). Attention to Banner Ads and Their Effectiveness: An Eye-Tracking Approach. International Journal of Electronic Commerce, 17(1), 119-137. doi:10.2753/jec1086-4415170105 es_ES
dc.description.references McAlister, L., Srinivasan, R., Jindal, N., & Cannella, A. A. (2016). Advertising Effectiveness: The Moderating Effect of Firm Strategy. Journal of Marketing Research, 53(2), 207-224. doi:10.1509/jmr.13.0285 es_ES
dc.description.references McDuff, D., Kaliouby, R. E., Cohn, J. F., & Picard, R. W. (2015). Predicting Ad Liking and Purchase Intent: Large-Scale Analysis of Facial Responses to Ads. IEEE Transactions on Affective Computing, 6(3), 223-235. doi:10.1109/taffc.2014.2384198 es_ES
dc.description.references Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229-240. doi:10.1111/j.1469-8986.2010.01061.x es_ES
dc.description.references Babiloni, F. (2012). Consumer Nueroscience: A New Area of Study for Biomedical Engineers. IEEE Pulse, 3(3), 21-23. doi:10.1109/mpul.2012.2189166 es_ES
dc.description.references Mould, D., Mandryk, R. L., & Li, H. (2012). Emotional response and visual attention to non-photorealistic images. Computers & Graphics, 36(6), 658-672. doi:10.1016/j.cag.2012.03.039 es_ES
dc.description.references Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, Heart Rate, and Galvanic Skin Response Assessment for an Advertising Perception Study: Application to Antismoking Public Service Announcements. Journal of Visualized Experiments, (126). doi:10.3791/55872 es_ES
dc.description.references Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE Transactions on Biomedical Engineering, BME-32(3), 230-236. doi:10.1109/tbme.1985.325532 es_ES
dc.description.references Pieters, R., Warlop, L., & Wedel, M. (2002). Breaking Through the Clutter: Benefits of Advertisement Originality and Familiarity for Brand Attention and Memory. Management Science, 48(6), 765-781. doi:10.1287/mnsc.48.6.765.192 es_ES
dc.description.references Piskorski, J., & Guzik, P. (2007). Geometry of the Poincaré plot ofRRintervals and its asymmetry in healthy adults. Physiological Measurement, 28(3), 287-300. doi:10.1088/0967-3334/28/3/005 es_ES
dc.description.references Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039 es_ES
dc.description.references Ruanguttamanun, C. (2014). Neuromarketing: I Put Myself into a fMRI Scanner and Realized that I love Louis Vuitton Ads. Procedia - Social and Behavioral Sciences, 148, 211-218. doi:10.1016/j.sbspro.2014.07.036 es_ES
dc.description.references Shehu, E., Bijmolt, T. H. A., & Clement, M. (2016). Effects of Likeability Dynamics on Consumers’ Intention to Share Online Video Advertisements. Journal of Interactive Marketing, 35, 27-43. doi:10.1016/j.intmar.2016.01.001 es_ES
dc.description.references Smith, A. N., Fischer, E., & Yongjian, C. (2012). How Does Brand-related User-generated Content Differ across YouTube, Facebook, and Twitter? Journal of Interactive Marketing, 26(2), 102-113. doi:10.1016/j.intmar.2012.01.002 es_ES
dc.description.references Strach, P., Zuber, K., Fowler, E. F., Ridout, T. N., & Searles, K. (2015). In a Different Voice? Explaining the Use of Men and Women as Voice-Over Announcers in Political Advertising. Political Communication, 32(2), 183-205. doi:10.1080/10584609.2014.914614 es_ES
dc.description.references Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381. doi:10.1093/oxfordjournals.eurheartj.a014868 es_ES
dc.description.references Tomkovick, C., Yelkur, R., & Christians, L. (2001). The USA’s biggest marketing event keeps getting bigger: an in-depth look at Super Bowl advertising in the 1990s. Journal of Marketing Communications, 7(2), 89-108. doi:10.1080/13527260121725 es_ES
dc.description.references Vakratsas, D., & Ambler, T. (1999). How Advertising Works: What Do We Really Know? Journal of Marketing, 63(1), 26. doi:10.2307/1251999 es_ES
dc.description.references Valenza, G., Allegrini, P., Lanatà, A., & Scilingo, E. P. (2012). Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers in Neuroengineering, 5. doi:10.3389/fneng.2012.00003 es_ES
dc.description.references Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P., & Barbieri, R. (2014). Revealing Real-Time Emotional Responses: a Personalized Assessment based on Heartbeat Dynamics. Scientific Reports, 4(1). doi:10.1038/srep04998 es_ES
dc.description.references Varan, D., Lang, A., Barwise, P., Weber, R., & Bellman, S. (2015). How Reliable Are Neuromarketers’ Measures of Advertising Effectiveness? Journal of Advertising Research, 55(2), 176-191. doi:10.2501/jar-55-2-176-191 es_ES
dc.description.references Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., … Babiloni, F. (2010). EEG Analysis of the Brain Activity during the Observation of Commercial, Political, or Public Service Announcements. Computational Intelligence and Neuroscience, 2010, 1-7. doi:10.1155/2010/985867 es_ES
dc.description.references Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., … Babiloni, F. (2014). Neurophysiological Tools to Investigate Consumer’s Gender Differences during the Observation of TV Commercials. Computational and Mathematical Methods in Medicine, 2014, 1-12. doi:10.1155/2014/912981 es_ES
dc.description.references Vecchiato, G., Susac, A., Margeti, S., De Vico Fallani, F., Maglione, A. G., Supek, S., … Babiloni, F. (2012). High-Resolution EEG Analysis of Power Spectral Density Maps and Coherence Networks in a Proportional Reasoning Task. Brain Topography, 26(2), 303-314. doi:10.1007/s10548-012-0259-5 es_ES
dc.description.references Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., … Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49(5), 579-583. doi:10.1007/s11517-011-0747-x es_ES
dc.description.references Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., … Winer, R. S. (2015). Predicting Advertising success beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436-452. doi:10.1509/jmr.13.0593 es_ES
dc.description.references Wackermann, J., Lehmann, D., Michel, C. M., & Strik, W. K. (1993). Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. International Journal of Psychophysiology, 14(3), 269-283. doi:10.1016/0167-8760(93)90041-m es_ES
dc.description.references Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of Marketing, 80(6), 97-121. doi:10.1509/jm.15.0413 es_ES
dc.description.references Werkle-Bergner, M., Müller, V., Li, S.-C., & Lindenberger, U. (2006). Cortical EEG correlates of successful memory encoding: Implications for lifespan comparisons. Neuroscience & Biobehavioral Reviews, 30(6), 839-854. doi:10.1016/j.neubiorev.2006.06.009 es_ES
dc.description.references West, P. M., Brockett, P. L., & Golden, L. L. (1997). A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice. Marketing Science, 16(4), 370-391. doi:10.1287/mksc.16.4.370 es_ES
dc.description.references Zhou, R., Khemmarat, S., Gao, L., Wan, J., & Zhang, J. (2016). How YouTube videos are discovered and its impact on video views. Multimedia Tools and Applications, 75(10), 6035-6058. doi:10.1007/s11042-015-3206-0 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem