- -

Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Biagi, L. es_ES
dc.contributor.author Hirata-Bertachi, A. es_ES
dc.contributor.author Conget, I. es_ES
dc.contributor.author Quirós, C. es_ES
dc.contributor.author Giménez, M. es_ES
dc.contributor.author Ampudia-Blasco, F.J. es_ES
dc.contributor.author Rossetti, P. es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Vehí, J. es_ES
dc.date.accessioned 2020-07-18T03:31:43Z
dc.date.available 2020-07-18T03:31:43Z
dc.date.issued 2017-11 es_ES
dc.identifier.issn 1932-2968 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148242
dc.description.abstract [EN] Background: Closed-loop (CL) systems aims to outperform usual treatments in blood glucose control and continuous glucose monitors (CGM) are a key component in such systems. Meals represents one of the main disturbances in blood glucose control, and postprandial period (PP) is a challenging situation for both CL system and CGM accuracy. Methods: We performed an extensive analysis of sensor¿s performance by numerical accuracy and precision during PP, as well as its influence in blood glucose control under CL therapy. Results: During PP the mean absolute relative difference (MARD) for both sensors presented lower accuracy in the hypoglycemic range (19.4 ± 12.8%) than in other ranges (12.2 ± 8.6% in euglycemic range and 9.3 ± 9.3% in hyperglycemic range). The overall MARD was 12.1 ± 8.2%. We have also observed lower MARD for rates of change between 0 and 2 mg/dl. In CL therapy, the 10 trials with the best sensor spent less time in hypoglycemia (PG < 70 mg/dl) than the 10 trials with the worst sensors (2 ± 7 minutes vs 32 ± 38 minutes, respectively). Conclusions: In terms of accuracy, our results resemble to previously reported. Furthermore, our results showed that sensors with the lowest MARD spent less time in hypoglycemic range, indicating that the performance of CL algorithm to control PP was related to sensor accuracy. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has been partially supported by the Spanish Government through Grants DPI 2013-46982-C2-1-R, DPI 2016-78831-C2-1-R, DPI 2013-46982-C2-2-R, and DPI 2016-78831-C2-2-R, the National Council of Technological and Scientific Development, CNPq Brazil through Grants 202050/2015-7 and 207688/2014-1. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Diabetes Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Accuracy es_ES
dc.subject Closed-loop control es_ES
dc.subject Continuous glucose monitoring es_ES
dc.subject Postprandial period es_ES
dc.subject Type 1 diabetes es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1177/1932296817714272 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-2-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//202050%2F2015-7/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-1-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-2-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-1-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//207688%2F2014-1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Biagi, L.; Hirata-Bertachi, A.; Conget, I.; Quirós, C.; Giménez, M.; Ampudia-Blasco, F.; Rossetti, P.... (2017). Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance. Journal of Diabetes Science and Technology. 11(6):1089-1095. https://doi.org/10.1177/1932296817714272 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 10th International Conference on Advanced Technologies & Treatments for Diabetes (ATTD'17) es_ES
dc.relation.conferencedate Febrero 15-18,2017 es_ES
dc.relation.conferenceplace Paris, France es_ES
dc.relation.publisherversion https://doi.org/10.1177/1932296817714272 es_ES
dc.description.upvformatpinicio 1089 es_ES
dc.description.upvformatpfin 1095 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 28633537 es_ES
dc.identifier.pmcid PMC5951050 es_ES
dc.relation.pasarela S\353468 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 37(5), 1191-1197. doi:10.2337/dc13-2108 es_ES
dc.description.references Cengiz, E., & Tamborlane, W. V. (2009). A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring. Diabetes Technology & Therapeutics, 11(S1), S-11-S-16. doi:10.1089/dia.2009.0002 es_ES
dc.description.references Cobelli, C., Schiavon, M., Dalla Man, C., Basu, A., & Basu, R. (2016). Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology & Therapeutics, 18(8), 505-511. doi:10.1089/dia.2016.0112 es_ES
dc.description.references Castle, J. R., & Ward, W. K. (2010). Amperometric Glucose Sensors: Sources of Error and Potential Benefit of Redundancy. Journal of Diabetes Science and Technology, 4(1), 221-225. doi:10.1177/193229681000400127 es_ES
dc.description.references Basu, A., Dube, S., Veettil, S., Slama, M., Kudva, Y. C., Peyser, T., … Basu, R. (2014). Time Lag of Glucose From Intravascular to Interstitial Compartment in Type 1 Diabetes. Journal of Diabetes Science and Technology, 9(1), 63-68. doi:10.1177/1932296814554797 es_ES
dc.description.references Keenan, D. B., Grosman, B., Clark, H. W., Roy, A., Weinzimer, S. A., Shah, R. V., & Mastrototaro, J. J. (2011). Continuous Glucose Monitoring Considerations for the Development of a Closed-Loop Artificial Pancreas System. Journal of Diabetes Science and Technology, 5(6), 1327-1336. doi:10.1177/193229681100500603 es_ES
dc.description.references Van Bon, A. C., Jonker, L. D., Koebrugge, R., Koops, R., Hoekstra, J. B. L., & DeVries, J. H. (2012). Feasibility of a Bihormonal Closed-Loop System to Control Postexercise and Postprandial Glucose Excursions. Journal of Diabetes Science and Technology, 6(5), 1114-1122. doi:10.1177/193229681200600516 es_ES
dc.description.references Rossetti, P., Quirós, C., Moscardó, V., Comas, A., Giménez, M., Ampudia-Blasco, F. J., … Vehí, J. (2017). Closed-Loop Control of Postprandial Glycemia Using an Insulin-on-Board Limitation Through Continuous Action on Glucose Target. Diabetes Technology & Therapeutics, 19(6), 355-362. doi:10.1089/dia.2016.0443 es_ES
dc.description.references Bailey, T., Zisser, H., & Chang, A. (2009). New Features and Performance of a Next-Generation SEVEN-Day Continuous Glucose Monitoring System with Short Lag Time. Diabetes Technology & Therapeutics, 11(12), 749-755. doi:10.1089/dia.2009.0075 es_ES
dc.description.references Zschornack, E., Schmid, C., Pleus, S., Link, M., Klötzer, H.-M., Obermaier, K., … Freckmann, G. (2013). Evaluation of the Performance of a Novel System for Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 7(4), 815-823. doi:10.1177/193229681300700403 es_ES
dc.description.references Pleus, S., Schmid, C., Link, M., Zschornack, E., Klötzer, H.-M., Haug, C., & Freckmann, G. (2013). Performance Evaluation of a Continuous Glucose Monitoring System under Conditions Similar to Daily Life. Journal of Diabetes Science and Technology, 7(4), 833-841. doi:10.1177/193229681300700405 es_ES
dc.description.references Zisser, H. C., Bailey, T. S., Schwartz, S., Ratner, R. E., & Wise, J. (2009). Accuracy of the SEVEN® Continuous Glucose Monitoring System: Comparison with Frequently Sampled Venous Glucose Measurements. Journal of Diabetes Science and Technology, 3(5), 1146-1154. doi:10.1177/193229680900300519 es_ES
dc.description.references Obermaier, K., Schmelzeisen-Redeker, G., Schoemaker, M., Klötzer, H.-M., Kirchsteiger, H., Eikmeier, H., & del Re, L. (2013). Performance Evaluations of Continuous Glucose Monitoring Systems: Precision Absolute Relative Deviation is Part of the Assessment. Journal of Diabetes Science and Technology, 7(4), 824-832. doi:10.1177/193229681300700404 es_ES
dc.description.references Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987). Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose. Diabetes Care, 10(5), 622-628. doi:10.2337/diacare.10.5.622 es_ES
dc.description.references Martin Bland, J., & Altman, D. (1986). STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 327(8476), 307-310. doi:10.1016/s0140-6736(86)90837-8 es_ES
dc.description.references Breton, M., & Kovatchev, B. (2008). Analysis, Modeling, and Simulation of the Accuracy of Continuous Glucose Sensors. Journal of Diabetes Science and Technology, 2(5), 853-862. doi:10.1177/193229680800200517 es_ES
dc.description.references Kropff, J., Bruttomesso, D., Doll, W., Farret, A., Galasso, S., Luijf, Y. M., … DeVries, J. H. (2014). Accuracy of two continuous glucose monitoring systems: a head‐to‐head comparison under clinical research centre and daily life conditions. Diabetes, Obesity and Metabolism, 17(4), 343-349. doi:10.1111/dom.12378 es_ES
dc.description.references Reddy, M., Herrero, P., Sharkawy, M. E., Pesl, P., Jugnee, N., Pavitt, D., … Oliver, N. S. (2015). Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes. Journal of Diabetes Science and Technology, 10(2), 405-413. doi:10.1177/1932296815616134 es_ES
dc.description.references Pleus, S., Schoemaker, M., Morgenstern, K., Schmelzeisen-Redeker, G., Haug, C., Link, M., … Freckmann, G. (2015). Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings. Journal of Diabetes Science and Technology, 9(4), 801-807. doi:10.1177/1932296815578716 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem