- -

Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance

Mostrar el registro completo del ítem

Biagi, L.; Hirata-Bertachi, A.; Conget, I.; Quirós, C.; Giménez, M.; Ampudia-Blasco, F.; Rossetti, P.... (2017). Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance. Journal of Diabetes Science and Technology. 11(6):1089-1095. https://doi.org/10.1177/1932296817714272

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148242

Ficheros en el ítem

Metadatos del ítem

Título: Extensive assessment of blood glucose monitoring during postprandial period and its impact on closed-loop performance
Autor: Biagi, L. Hirata-Bertachi, A. Conget, I. Quirós, C. Giménez, M. Ampudia-Blasco, F.J. Rossetti, P. Bondía Company, Jorge Vehí, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Background: Closed-loop (CL) systems aims to outperform usual treatments in blood glucose control and continuous glucose monitors (CGM) are a key component in such systems. Meals represents one of the main disturbances ...[+]
Palabras clave: Accuracy , Closed-loop control , Continuous glucose monitoring , Postprandial period , Type 1 diabetes
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Diabetes Science and Technology. (issn: 1932-2968 )
DOI: 10.1177/1932296817714272
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/1932296817714272
Título del congreso: 10th International Conference on Advanced Technologies & Treatments for Diabetes (ATTD'17)
Lugar del congreso: Paris, France
Fecha congreso: Febrero 15-18,2017
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-2-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/
...[+]
info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-2-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/
info:eu-repo/grantAgreement/CNPq//202050%2F2015-7/
info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-1-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/
info:eu-repo/grantAgreement/MINECO//DPI2016-78831-C2-2-R/ES/SOLUCIONES PARA LA MEJORA DE LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL MEDIANTE ARQUITECTURAS DE CONTROL MULTIVARIABLE TOLERANTES A FALLOS/
info:eu-repo/grantAgreement/MINECO//DPI2013-46982-C2-1-R/ES/NUEVOS METODOS PARA LA EFICIENCIA Y SEGURIDAD DEL PANCREAS ARTIFICIAL DOMICILIARIO EN DIABETES TIPO 1/
info:eu-repo/grantAgreement/CNPq//207688%2F2014-1/
[-]
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has been partially supported by the Spanish Government through Grants DPI ...[+]
Tipo: Artículo Comunicación en congreso

References

Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 37(5), 1191-1197. doi:10.2337/dc13-2108

Cengiz, E., & Tamborlane, W. V. (2009). A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring. Diabetes Technology & Therapeutics, 11(S1), S-11-S-16. doi:10.1089/dia.2009.0002

Cobelli, C., Schiavon, M., Dalla Man, C., Basu, A., & Basu, R. (2016). Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology & Therapeutics, 18(8), 505-511. doi:10.1089/dia.2016.0112 [+]
Doyle, F. J., Huyett, L. M., Lee, J. B., Zisser, H. C., & Dassau, E. (2014). Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms. Diabetes Care, 37(5), 1191-1197. doi:10.2337/dc13-2108

Cengiz, E., & Tamborlane, W. V. (2009). A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring. Diabetes Technology & Therapeutics, 11(S1), S-11-S-16. doi:10.1089/dia.2009.0002

Cobelli, C., Schiavon, M., Dalla Man, C., Basu, A., & Basu, R. (2016). Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology & Therapeutics, 18(8), 505-511. doi:10.1089/dia.2016.0112

Castle, J. R., & Ward, W. K. (2010). Amperometric Glucose Sensors: Sources of Error and Potential Benefit of Redundancy. Journal of Diabetes Science and Technology, 4(1), 221-225. doi:10.1177/193229681000400127

Basu, A., Dube, S., Veettil, S., Slama, M., Kudva, Y. C., Peyser, T., … Basu, R. (2014). Time Lag of Glucose From Intravascular to Interstitial Compartment in Type 1 Diabetes. Journal of Diabetes Science and Technology, 9(1), 63-68. doi:10.1177/1932296814554797

Keenan, D. B., Grosman, B., Clark, H. W., Roy, A., Weinzimer, S. A., Shah, R. V., & Mastrototaro, J. J. (2011). Continuous Glucose Monitoring Considerations for the Development of a Closed-Loop Artificial Pancreas System. Journal of Diabetes Science and Technology, 5(6), 1327-1336. doi:10.1177/193229681100500603

Van Bon, A. C., Jonker, L. D., Koebrugge, R., Koops, R., Hoekstra, J. B. L., & DeVries, J. H. (2012). Feasibility of a Bihormonal Closed-Loop System to Control Postexercise and Postprandial Glucose Excursions. Journal of Diabetes Science and Technology, 6(5), 1114-1122. doi:10.1177/193229681200600516

Rossetti, P., Quirós, C., Moscardó, V., Comas, A., Giménez, M., Ampudia-Blasco, F. J., … Vehí, J. (2017). Closed-Loop Control of Postprandial Glycemia Using an Insulin-on-Board Limitation Through Continuous Action on Glucose Target. Diabetes Technology & Therapeutics, 19(6), 355-362. doi:10.1089/dia.2016.0443

Bailey, T., Zisser, H., & Chang, A. (2009). New Features and Performance of a Next-Generation SEVEN-Day Continuous Glucose Monitoring System with Short Lag Time. Diabetes Technology & Therapeutics, 11(12), 749-755. doi:10.1089/dia.2009.0075

Zschornack, E., Schmid, C., Pleus, S., Link, M., Klötzer, H.-M., Obermaier, K., … Freckmann, G. (2013). Evaluation of the Performance of a Novel System for Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 7(4), 815-823. doi:10.1177/193229681300700403

Pleus, S., Schmid, C., Link, M., Zschornack, E., Klötzer, H.-M., Haug, C., & Freckmann, G. (2013). Performance Evaluation of a Continuous Glucose Monitoring System under Conditions Similar to Daily Life. Journal of Diabetes Science and Technology, 7(4), 833-841. doi:10.1177/193229681300700405

Zisser, H. C., Bailey, T. S., Schwartz, S., Ratner, R. E., & Wise, J. (2009). Accuracy of the SEVEN® Continuous Glucose Monitoring System: Comparison with Frequently Sampled Venous Glucose Measurements. Journal of Diabetes Science and Technology, 3(5), 1146-1154. doi:10.1177/193229680900300519

Obermaier, K., Schmelzeisen-Redeker, G., Schoemaker, M., Klötzer, H.-M., Kirchsteiger, H., Eikmeier, H., & del Re, L. (2013). Performance Evaluations of Continuous Glucose Monitoring Systems: Precision Absolute Relative Deviation is Part of the Assessment. Journal of Diabetes Science and Technology, 7(4), 824-832. doi:10.1177/193229681300700404

Clarke, W. L., Cox, D., Gonder-Frederick, L. A., Carter, W., & Pohl, S. L. (1987). Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose. Diabetes Care, 10(5), 622-628. doi:10.2337/diacare.10.5.622

Martin Bland, J., & Altman, D. (1986). STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 327(8476), 307-310. doi:10.1016/s0140-6736(86)90837-8

Breton, M., & Kovatchev, B. (2008). Analysis, Modeling, and Simulation of the Accuracy of Continuous Glucose Sensors. Journal of Diabetes Science and Technology, 2(5), 853-862. doi:10.1177/193229680800200517

Kropff, J., Bruttomesso, D., Doll, W., Farret, A., Galasso, S., Luijf, Y. M., … DeVries, J. H. (2014). Accuracy of two continuous glucose monitoring systems: a head‐to‐head comparison under clinical research centre and daily life conditions. Diabetes, Obesity and Metabolism, 17(4), 343-349. doi:10.1111/dom.12378

Reddy, M., Herrero, P., Sharkawy, M. E., Pesl, P., Jugnee, N., Pavitt, D., … Oliver, N. S. (2015). Metabolic Control With the Bio-inspired Artificial Pancreas in Adults With Type 1 Diabetes. Journal of Diabetes Science and Technology, 10(2), 405-413. doi:10.1177/1932296815616134

Pleus, S., Schoemaker, M., Morgenstern, K., Schmelzeisen-Redeker, G., Haug, C., Link, M., … Freckmann, G. (2015). Rate-of-Change Dependence of the Performance of Two CGM Systems During Induced Glucose Swings. Journal of Diabetes Science and Technology, 9(4), 801-807. doi:10.1177/1932296815578716

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem