- -

Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator

Mostrar el registro completo del ítem

Vallés Miquel, M.; Araujo-Gómez, P.; Mata Amela, V.; Valera Fernández, Á.; Díaz-Rodríguez, M.; Page Del Pozo, AF.; Farhat, N. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines. 46(4):425-439. https://doi.org/10.1080/15397734.2017.1355249

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148244

Ficheros en el ítem

Metadatos del ítem

Título: Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator
Autor: Vallés Miquel, Marina Araujo-Gómez, P. Mata Amela, Vicente Valera Fernández, Ángel Díaz-Rodríguez, Miguel Page Del Pozo, Alvaro Felipe Farhat, Nidal
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Although parallel manipulators started with the introduction of architectures with six degrees of freedom, a vast number of applications require less than six degrees of freedom. Consequently, scholars have proposed ...[+]
Palabras clave: Control architecture design , Kinematics , Mechatronics , Parallel manipulator , Robot control
Derechos de uso: Reserva de todos los derechos
Fuente:
Mechanics Based Design of Structures and Machines. (issn: 1539-7734 )
DOI: 10.1080/15397734.2017.1355249
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/15397734.2017.1355249
Código del Proyecto:
info:eu-repo/grantAgreement/FONACIT//2013002165/
info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/
Descripción: "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final versíon of the article as published in the Mechanics Based Design of Structures and Machines 2018 [copyright Taylor & Francis], available online at: https://www.tandfonline.com/doi/10.1080/15397734.2017.1355249."
Agradecimientos:
The authors wish to thank the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial funding of this study under project DPI2013-44227-R. We also want to thank the Fondo ...[+]
Tipo: Artículo

References

Araujo-Gómez, P., Díaz-Rodriguez, M., Mata, V., Valera, A., & Page, A. (2016). Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation. CISM International Centre for Mechanical Sciences, 303-310. doi:10.1007/978-3-319-33714-2_34

Bruyninckx, H., Soetens, P., Issaris, P., Leuven, K. (2002). The Orocos Project. http://www.orocos.org.

Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234 [+]
Araujo-Gómez, P., Díaz-Rodriguez, M., Mata, V., Valera, A., & Page, A. (2016). Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation. CISM International Centre for Mechanical Sciences, 303-310. doi:10.1007/978-3-319-33714-2_34

Bruyninckx, H., Soetens, P., Issaris, P., Leuven, K. (2002). The Orocos Project. http://www.orocos.org.

Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234

Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542

Cazalilla, J., Vallés, M., Valera, Á., Mata, V., & Díaz-Rodríguez, M. (2016). Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines, 44(1-2), 16-31. doi:10.1080/15397734.2015.1030679

Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242

Clavel, R. (1988). A Fast Robot with Parallel Geometry. Proc. Int. Symposium on Industrial Robots, Lausanne, Switzerland, 91–100.

Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764

Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007

Escamilla, R. F., MacLeod, T. D., Wilk, K. E., Paulos, L., & Andrews, J. R. (2012). Cruciate ligament loading during common knee rehabilitation exercises. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(9), 670-680. doi:10.1177/0954411912451839

Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957

Garage, W. (2009). Robot Operating System. www.ros.org. Accessed date: August 2nd, 2017.

Girone, M., Burdea, G., Bouzit, M., Popescu, V., & Deutsch, J. E. (2001). Autonomous Robots, 10(2), 203-212. doi:10.1023/a:1008938121020

Gough, V., Whitehall, S. (1962). Universal Tyre Test Machine. Proceedings 9th Int. Technical Congress FISITA, London, vol. 117, 117–135.

Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986

Lee, K.-M., & Arjunan, S. (1992). A Three Degrees of Freedom Micro-Motion In-Parallel Actuated Manipulator. Precision Sensors, Actuators and Systems, 345-374. doi:10.1007/978-94-011-1818-7_9

Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257

Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001

Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-x

Pierrot, F., Company, O. (1999). H4: A New Family of 4 DoF Parallel Robots. Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Georgia, USA, 508–513.

Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7

Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735

Stewart, D. (1965). A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371-386. doi:10.1243/pime_proc_1965_180_029_02

Vallés, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & Díaz-Rodríguez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120

Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292

Xu, W. L., Pap, J.-S., & Bronlund, J. (2008). Design of a Biologically Inspired Parallel Robot for Foods Chewing. IEEE Transactions on Industrial Electronics, 55(2), 832-841. doi:10.1109/tie.2007.909067

Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.20150

Zarkandi, S. (2011). Kinematics and Singularity Analysis of a Parallel Manipulator with Three Rotational and One Translational DOFs. Mechanics Based Design of Structures and Machines, 39(3), 392-407. doi:10.1080/15397734.2011.559149

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem