- -

Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallés Miquel, Marina es_ES
dc.contributor.author Araujo-Gómez, P. es_ES
dc.contributor.author Mata Amela, Vicente es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.contributor.author Díaz-Rodríguez, Miguel es_ES
dc.contributor.author Page Del Pozo, Alvaro Felipe es_ES
dc.contributor.author Farhat, Nidal es_ES
dc.date.accessioned 2020-07-18T03:31:47Z
dc.date.available 2020-07-18T03:31:47Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1539-7734 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148244
dc.description "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final versíon of the article as published in the Mechanics Based Design of Structures and Machines 2018 [copyright Taylor & Francis], available online at: https://www.tandfonline.com/doi/10.1080/15397734.2017.1355249." es_ES
dc.description.abstract [EN] Although parallel manipulators started with the introduction of architectures with six degrees of freedom, a vast number of applications require less than six degrees of freedom. Consequently, scholars have proposed architectures with three and four degrees of freedom, but relatively few four degrees of freedom parallel manipulators have become prototypes, especially of the two rotation and two translation motion types. In this article, we explain the mechatronics design, prototype, and control architecture design of a four degrees of freedom parallel manipulators with two rotation and two translation motions. We chose to design a four degrees of freedom manipulator based on the motion needed to complete the tasks of lower limb rehabilitation. To the author's best knowledge, parallel manipulators between three and six degrees of freedom for rehabilitation of lower limb have not been proposed to date. The developed architecture enhances the three minimum degrees of freedom required by adding a four degrees of freedom, which allows combinations of normal or tangential efforts in the joints, or torque acting on the knee. We put forward the inverse and forward displacement equations, describe the prototype, perform the experimental setup, and develop the hardware and control architecture. The tracking accuracy experiments from the proposed controller show that the manipulator can accomplish the required application. es_ES
dc.description.sponsorship The authors wish to thank the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial funding of this study under project DPI2013-44227-R. We also want to thank the Fondo Nacional de Ciencia, Tecnologia e Innovacion (FONACIT-Venezuela) for its financial support under the project No. 2013002165. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Mechanics Based Design of Structures and Machines es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Control architecture design es_ES
dc.subject Kinematics es_ES
dc.subject Mechatronics es_ES
dc.subject Parallel manipulator es_ES
dc.subject Robot control es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/15397734.2017.1355249 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONACIT//2013002165/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Vallés Miquel, M.; Araujo-Gómez, P.; Mata Amela, V.; Valera Fernández, Á.; Díaz-Rodríguez, M.; Page Del Pozo, AF.; Farhat, N. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines. 46(4):425-439. https://doi.org/10.1080/15397734.2017.1355249 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/15397734.2017.1355249 es_ES
dc.description.upvformatpinicio 425 es_ES
dc.description.upvformatpfin 439 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\352948 es_ES
dc.contributor.funder Fondo Nacional de Ciencia, Tecnología e Innovación, Venezuela es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Araujo-Gómez, P., Díaz-Rodriguez, M., Mata, V., Valera, A., & Page, A. (2016). Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation. CISM International Centre for Mechanical Sciences, 303-310. doi:10.1007/978-3-319-33714-2_34 es_ES
dc.description.references Bruyninckx, H., Soetens, P., Issaris, P., Leuven, K. (2002). The Orocos Project. http://www.orocos.org. es_ES
dc.description.references Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234 es_ES
dc.description.references Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542 es_ES
dc.description.references Cazalilla, J., Vallés, M., Valera, Á., Mata, V., & Díaz-Rodríguez, M. (2016). Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines, 44(1-2), 16-31. doi:10.1080/15397734.2015.1030679 es_ES
dc.description.references Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242 es_ES
dc.description.references Clavel, R. (1988). A Fast Robot with Parallel Geometry. Proc. Int. Symposium on Industrial Robots, Lausanne, Switzerland, 91–100. es_ES
dc.description.references Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764 es_ES
dc.description.references Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007 es_ES
dc.description.references Escamilla, R. F., MacLeod, T. D., Wilk, K. E., Paulos, L., & Andrews, J. R. (2012). Cruciate ligament loading during common knee rehabilitation exercises. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(9), 670-680. doi:10.1177/0954411912451839 es_ES
dc.description.references Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957 es_ES
dc.description.references Garage, W. (2009). Robot Operating System. www.ros.org. Accessed date: August 2nd, 2017. es_ES
dc.description.references Girone, M., Burdea, G., Bouzit, M., Popescu, V., & Deutsch, J. E. (2001). Autonomous Robots, 10(2), 203-212. doi:10.1023/a:1008938121020 es_ES
dc.description.references Gough, V., Whitehall, S. (1962). Universal Tyre Test Machine. Proceedings 9th Int. Technical Congress FISITA, London, vol. 117, 117–135. es_ES
dc.description.references Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986 es_ES
dc.description.references Lee, K.-M., & Arjunan, S. (1992). A Three Degrees of Freedom Micro-Motion In-Parallel Actuated Manipulator. Precision Sensors, Actuators and Systems, 345-374. doi:10.1007/978-94-011-1818-7_9 es_ES
dc.description.references Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257 es_ES
dc.description.references Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001 es_ES
dc.description.references Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-x es_ES
dc.description.references Pierrot, F., Company, O. (1999). H4: A New Family of 4 DoF Parallel Robots. Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Georgia, USA, 508–513. es_ES
dc.description.references Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7 es_ES
dc.description.references Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735 es_ES
dc.description.references Stewart, D. (1965). A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371-386. doi:10.1243/pime_proc_1965_180_029_02 es_ES
dc.description.references Vallés, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & Díaz-Rodríguez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120 es_ES
dc.description.references Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292 es_ES
dc.description.references Xu, W. L., Pap, J.-S., & Bronlund, J. (2008). Design of a Biologically Inspired Parallel Robot for Foods Chewing. IEEE Transactions on Industrial Electronics, 55(2), 832-841. doi:10.1109/tie.2007.909067 es_ES
dc.description.references Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.20150 es_ES
dc.description.references Zarkandi, S. (2011). Kinematics and Singularity Analysis of a Parallel Manipulator with Three Rotational and One Translational DOFs. Mechanics Based Design of Structures and Machines, 39(3), 392-407. doi:10.1080/15397734.2011.559149 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem