Mostrar el registro sencillo del ítem
dc.contributor.author | Vallés Miquel, Marina | es_ES |
dc.contributor.author | Araujo-Gómez, P. | es_ES |
dc.contributor.author | Mata Amela, Vicente | es_ES |
dc.contributor.author | Valera Fernández, Ángel | es_ES |
dc.contributor.author | Díaz-Rodríguez, Miguel | es_ES |
dc.contributor.author | Page Del Pozo, Alvaro Felipe | es_ES |
dc.contributor.author | Farhat, Nidal | es_ES |
dc.date.accessioned | 2020-07-18T03:31:47Z | |
dc.date.available | 2020-07-18T03:31:47Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1539-7734 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148244 | |
dc.description | "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final versíon of the article as published in the Mechanics Based Design of Structures and Machines 2018 [copyright Taylor & Francis], available online at: https://www.tandfonline.com/doi/10.1080/15397734.2017.1355249." | es_ES |
dc.description.abstract | [EN] Although parallel manipulators started with the introduction of architectures with six degrees of freedom, a vast number of applications require less than six degrees of freedom. Consequently, scholars have proposed architectures with three and four degrees of freedom, but relatively few four degrees of freedom parallel manipulators have become prototypes, especially of the two rotation and two translation motion types. In this article, we explain the mechatronics design, prototype, and control architecture design of a four degrees of freedom parallel manipulators with two rotation and two translation motions. We chose to design a four degrees of freedom manipulator based on the motion needed to complete the tasks of lower limb rehabilitation. To the author's best knowledge, parallel manipulators between three and six degrees of freedom for rehabilitation of lower limb have not been proposed to date. The developed architecture enhances the three minimum degrees of freedom required by adding a four degrees of freedom, which allows combinations of normal or tangential efforts in the joints, or torque acting on the knee. We put forward the inverse and forward displacement equations, describe the prototype, perform the experimental setup, and develop the hardware and control architecture. The tracking accuracy experiments from the proposed controller show that the manipulator can accomplish the required application. | es_ES |
dc.description.sponsorship | The authors wish to thank the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial funding of this study under project DPI2013-44227-R. We also want to thank the Fondo Nacional de Ciencia, Tecnologia e Innovacion (FONACIT-Venezuela) for its financial support under the project No. 2013002165. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Mechanics Based Design of Structures and Machines | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Control architecture design | es_ES |
dc.subject | Kinematics | es_ES |
dc.subject | Mechatronics | es_ES |
dc.subject | Parallel manipulator | es_ES |
dc.subject | Robot control | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/15397734.2017.1355249 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONACIT//2013002165/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Vallés Miquel, M.; Araujo-Gómez, P.; Mata Amela, V.; Valera Fernández, Á.; Díaz-Rodríguez, M.; Page Del Pozo, AF.; Farhat, N. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines. 46(4):425-439. https://doi.org/10.1080/15397734.2017.1355249 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/15397734.2017.1355249 | es_ES |
dc.description.upvformatpinicio | 425 | es_ES |
dc.description.upvformatpfin | 439 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 46 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\352948 | es_ES |
dc.contributor.funder | Fondo Nacional de Ciencia, Tecnología e Innovación, Venezuela | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Araujo-Gómez, P., Díaz-Rodriguez, M., Mata, V., Valera, A., & Page, A. (2016). Design of a 3-UPS-RPU Parallel Robot for Knee Diagnosis and Rehabilitation. CISM International Centre for Mechanical Sciences, 303-310. doi:10.1007/978-3-319-33714-2_34 | es_ES |
dc.description.references | Bruyninckx, H., Soetens, P., Issaris, P., Leuven, K. (2002). The Orocos Project. http://www.orocos.org. | es_ES |
dc.description.references | Cao, R., Gao, F., Zhang, Y., Pan, D., & Chen, W. (2014). A New Parameter Design Method of a 6-DOF Parallel Motion Simulator for a Given Workspace. Mechanics Based Design of Structures and Machines, 43(1), 1-18. doi:10.1080/15397734.2014.904234 | es_ES |
dc.description.references | Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (1999). Kinematic Analysis and Optimization of a New Three Degree-of-Freedom Spatial Parallel Manipulator. Journal of Mechanical Design, 122(1), 17-24. doi:10.1115/1.533542 | es_ES |
dc.description.references | Cazalilla, J., Vallés, M., Valera, Á., Mata, V., & Díaz-Rodríguez, M. (2016). Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines, 44(1-2), 16-31. doi:10.1080/15397734.2015.1030679 | es_ES |
dc.description.references | Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242 | es_ES |
dc.description.references | Clavel, R. (1988). A Fast Robot with Parallel Geometry. Proc. Int. Symposium on Industrial Robots, Lausanne, Switzerland, 91–100. | es_ES |
dc.description.references | Díaz, I., Gil, J. J., & Sánchez, E. (2011). Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics, 2011, 1-11. doi:10.1155/2011/759764 | es_ES |
dc.description.references | Díaz-Rodríguez, M., Mata, V., Valera, Á., & Page, Á. (2010). A methodology for dynamic parameters identification of 3-DOF parallel robots in terms of relevant parameters. Mechanism and Machine Theory, 45(9), 1337-1356. doi:10.1016/j.mechmachtheory.2010.04.007 | es_ES |
dc.description.references | Escamilla, R. F., MacLeod, T. D., Wilk, K. E., Paulos, L., & Andrews, J. R. (2012). Cruciate ligament loading during common knee rehabilitation exercises. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(9), 670-680. doi:10.1177/0954411912451839 | es_ES |
dc.description.references | Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957 | es_ES |
dc.description.references | Garage, W. (2009). Robot Operating System. www.ros.org. Accessed date: August 2nd, 2017. | es_ES |
dc.description.references | Girone, M., Burdea, G., Bouzit, M., Popescu, V., & Deutsch, J. E. (2001). Autonomous Robots, 10(2), 203-212. doi:10.1023/a:1008938121020 | es_ES |
dc.description.references | Gough, V., Whitehall, S. (1962). Universal Tyre Test Machine. Proceedings 9th Int. Technical Congress FISITA, London, vol. 117, 117–135. | es_ES |
dc.description.references | Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986 | es_ES |
dc.description.references | Lee, K.-M., & Arjunan, S. (1992). A Three Degrees of Freedom Micro-Motion In-Parallel Actuated Manipulator. Precision Sensors, Actuators and Systems, 345-374. doi:10.1007/978-94-011-1818-7_9 | es_ES |
dc.description.references | Li, Y., & Xu, Q. (2007). Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation. IEEE/ASME Transactions on Mechatronics, 12(3), 265-273. doi:10.1109/tmech.2007.897257 | es_ES |
dc.description.references | Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001 | es_ES |
dc.description.references | Ortega, R., & Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial. Automatica, 25(6), 877-888. doi:10.1016/0005-1098(89)90054-x | es_ES |
dc.description.references | Pierrot, F., Company, O. (1999). H4: A New Family of 4 DoF Parallel Robots. Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Georgia, USA, 508–513. | es_ES |
dc.description.references | Ramsay, J. O., & Silverman, B. W. (1997). Functional Data Analysis. Springer Series in Statistics. doi:10.1007/978-1-4757-7107-7 | es_ES |
dc.description.references | Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735 | es_ES |
dc.description.references | Stewart, D. (1965). A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers, 180(1), 371-386. doi:10.1243/pime_proc_1965_180_029_02 | es_ES |
dc.description.references | Vallés, M., Cazalilla, J., Valera, Á., Mata, V., Page, Á., & Díaz-Rodríguez, M. (2015). A 3-PRS parallel manipulator for ankle rehabilitation: towards a low-cost robotic rehabilitation. Robotica, 35(10), 1939-1957. doi:10.1017/s0263574715000120 | es_ES |
dc.description.references | Vallés, M., Díaz-Rodríguez, M., Valera, Á., Mata, V., & Page, Á. (2012). Mechatronic Development and Dynamic Control of a 3-DOF Parallel Manipulator. Mechanics Based Design of Structures and Machines, 40(4), 434-452. doi:10.1080/15397734.2012.687292 | es_ES |
dc.description.references | Xu, W. L., Pap, J.-S., & Bronlund, J. (2008). Design of a Biologically Inspired Parallel Robot for Foods Chewing. IEEE Transactions on Industrial Electronics, 55(2), 832-841. doi:10.1109/tie.2007.909067 | es_ES |
dc.description.references | Yoon, J., Ryu, J., & Lim, K.-B. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems, 22(S1), S15-S33. doi:10.1002/rob.20150 | es_ES |
dc.description.references | Zarkandi, S. (2011). Kinematics and Singularity Analysis of a Parallel Manipulator with Three Rotational and One Translational DOFs. Mechanics Based Design of Structures and Machines, 39(3), 392-407. doi:10.1080/15397734.2011.559149 | es_ES |