- -

Constraint-aware learning of policies by demonstration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Constraint-aware learning of policies by demonstration

Mostrar el registro completo del ítem

Armesto, L.; Moura, J.; Ivan, V.; Erden, MS.; Sala, A.; Vijayakumar, S. (2018). Constraint-aware learning of policies by demonstration. The International Journal of Robotics Research. 37(13-14):1673-1689. https://doi.org/10.1177/0278364918784354

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148358

Ficheros en el ítem

Metadatos del ítem

Título: Constraint-aware learning of policies by demonstration
Autor: Armesto, Leopoldo Moura, Joao Ivan, Vladimir Erden, Mustafa Suphi Sala, Antonio Vijayakumar, Sethu
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Many practical tasks in robotic systems, such as cleaning windows, writing, or grasping, are inherently constrained. Learning policies subject to constraints is a challenging problem. In this paper, we propose a method ...[+]
Palabras clave: Direct policy learning , Constrained motion , Null-space policy , Force/torque application
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
The International Journal of Robotics Research. (issn: 0278-3649 )
DOI: 10.1177/0278364918784354
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0278364918784354
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/780684/EU/Memory of Motion/
info:eu-repo/grantAgreement/UKRI//EP%2FL016834%2F1/GB/EPSRC Centre for Doctoral Training in Robotics and Autonomous Systems (RAS) in Edinburgh/
info:eu-repo/grantAgreement/UKRI//EP%2FR026092%2F1/GB/Future AI and Robotics Hub for Space (FAIR-SPACE)/
info:eu-repo/grantAgreement/UKRI//EP%2FJ015040%2F1/GB/Heriot-Watt - Equipment Account/
info:eu-repo/grantAgreement/MINECO//DPI2016-81002-R/ES/CONTROL AVANZADO Y APRENDIZAJE DE ROBOTS EN OPERACIONES DE TRANSPORTE/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, auth/orship, and/or publication of this article: This work was supported by the Spanish Ministry of Economy and the European Union (grant ...[+]
Tipo: Artículo

References

Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2007). Correspondence Mapping Induced State and Action Metrics for Robotic Imitation. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 37(2), 299-307. doi:10.1109/tsmcb.2006.886947

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469-483. doi:10.1016/j.robot.2008.10.024

Armesto, L., Bosga, J., Ivan, V., & Vijayakumar, S. (2017). Efficient learning of constraints and generic null space policies. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2017.7989181 [+]
Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2007). Correspondence Mapping Induced State and Action Metrics for Robotic Imitation. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 37(2), 299-307. doi:10.1109/tsmcb.2006.886947

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469-483. doi:10.1016/j.robot.2008.10.024

Armesto, L., Bosga, J., Ivan, V., & Vijayakumar, S. (2017). Efficient learning of constraints and generic null space policies. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2017.7989181

Armesto, L., Ivan, V., Moura, J., Sala, A., & Vijayakumar, S. (2017). Learning Constrained Generalizable Policies by Demonstration. Robotics: Science and Systems XIII. doi:10.15607/rss.2017.xiii.036

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Artificial Intelligence Review, 11(1/5), 75-113. doi:10.1023/a:1006511328852

Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer, 20(6), 402-417. doi:10.1007/s00371-004-0244-4

Calinon, S. (2015). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1-29. doi:10.1007/s11370-015-0187-9

Calinon, S., & Billard, A. (2007). Incremental learning of gestures by imitation in a humanoid robot. Proceeding of the ACM/IEEE international conference on Human-robot interaction - HRI ’07. doi:10.1145/1228716.1228751

Cruse, H., & Brüwer, M. (1987). The human arm as a redundant manipulator: The control of path and joint angles. Biological Cybernetics, 57(1-2), 137-144. doi:10.1007/bf00318723

D’Souza, A., Vijayakumar, S., & Schaal, S. (s. f.). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). doi:10.1109/iros.2001.973374

Escande, A., Mansard, N., & Wieber, P.-B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006-1028. doi:10.1177/0278364914521306

Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling Movement Primitives: Interaction With the Environment and Bimanual Tasks. IEEE Transactions on Robotics, 30(4), 816-830. doi:10.1109/tro.2014.2304775

Gienger, M., Janssen, H., & Goerick, C. (s. f.). Task-oriented whole body motion for humanoid robots. 5th IEEE-RAS International Conference on Humanoid Robots, 2005. doi:10.1109/ichr.2005.1573574

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., & Righetti, L. (2015). Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Autonomous Robots, 40(3), 473-491. doi:10.1007/s10514-015-9476-6

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. doi:10.1016/0893-6080(89)90020-8

Howard, M., Klanke, S., Gienger, M., Goerick, C., & Vijayakumar, S. (2009). A novel method for learning policies from variable constraint data. Autonomous Robots, 27(2), 105-121. doi:10.1007/s10514-009-9129-8

Hussein, M., Mohammed, Y., & Ali, S. A. (2015). Learning from Demonstration Using Variational Bayesian Inference. Lecture Notes in Computer Science, 371-381. doi:10.1007/978-3-319-19066-2_36

Khatib, O., Sentis, L., & Park, J.-H. (s. f.). A Unified Framework for Whole-Body Humanoid Robot Control with Multiple Constraints and Contacts. European Robotics Symposium 2008, 303-312. doi:10.1007/978-3-540-78317-6_31

Lin, H.-C., Howard, M., & Vijayakumar, S. (2015). Learning null space projections. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139551

Lin, H.-C., Ray, P., & Howard, M. (2017). Learning task constraints in operational space formulation. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2017.7989039

Mansard, N., & Chaumette, F. (2007). Task Sequencing for High-Level Sensor-Based Control. IEEE Transactions on Robotics, 23(1), 60-72. doi:10.1109/tro.2006.889487

Moura, J., & Erden, M. S. (2017). Formulation of a Control and Path Planning Approach for a Cab front Cleaning Robot. Procedia CIRP, 59, 67-71. doi:10.1016/j.procir.2016.09.024

Paraschos, A., Lioutikov, R., Peters, J., & Neumann, G. (2017). Probabilistic Prioritization of Movement Primitives. IEEE Robotics and Automation Letters, 2(4), 2294-2301. doi:10.1109/lra.2017.2725440

Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2011.6095059

Schaal, S., & Atkeson, C. G. (1998). Constructive Incremental Learning from Only Local Information. Neural Computation, 10(8), 2047-2084. doi:10.1162/089976698300016963

Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 537-547. doi:10.1098/rstb.2002.1258

Shiller, Z. (2015). Off-Line and On-Line Trajectory Planning. Mechanisms and Machine Science, 29-62. doi:10.1007/978-3-319-14705-5_2

Siciliano B, Sciavicco L, Villani L, et al. (2009) Differential Kinematics and Statics. London: Springer, pp. 105–160.

Sugiura, H., Gienger, M., Janssen, H., & Goerick, C. (2006). Real-Time Self Collision Avoidance for Humanoids by means of Nullspace Criteria and Task Intervals. 2006 6th IEEE-RAS International Conference on Humanoid Robots. doi:10.1109/ichr.2006.321331

Towell, C., Howard, M., & Vijayakumar, S. (2010). Learning nullspace policies. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2010.5650663

Yoshikawa, T. (1985). Manipulability of Robotic Mechanisms. The International Journal of Robotics Research, 4(2), 3-9. doi:10.1177/027836498500400201

Zhang, X.-D. (2017). Matrix Analysis and Applications. doi:10.1017/9781108277587

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem