- -

Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Oroval, Mar es_ES
dc.contributor.author Díez, Paula es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Coll Merino, Mª Carmen es_ES
dc.contributor.author Marcos Martínez, María Dolores es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Villalonga, R. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2020-07-22T03:31:36Z
dc.date.available 2020-07-22T03:31:36Z
dc.date.issued 2017-01-26 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148457
dc.description "This is the peer reviewed version of the following article: Oroval, Mar, Paula Díez, Elena Aznar, Carmen Coll, María Dolores Marcos, Félix Sancenón, Reynaldo Villalonga, and Ramón Martínez-Máñez. 2016. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal 23 (6). Wiley: 1353 60. doi:10.1002/chem.201604104, which has been published in final form at https://doi.org/10.1002/chem.201604104. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H-benzimidazole groups, loaded with fluorescein isothiocyanate-labeled insulin (FITC-Ins) and capped by the formation of inclusion complexes between cyclodextrin-modified glucose oxidase (CD-GOx) and the benzimidazole groups grafted on the mesoporous support. Insulin delivery from the gated material in simulated blood plasma was assessed upon addition of glucose. Glucose is transformed by GOx into gluconic acid, which promoted the dethreading of the benzimidazole-CD-GOx inclusion complexes, allowing cargo release. Small quantities of this support would be needed to release the amount of insulin necessary to decrease diabetic blood glucose concentrations to regular levels. es_ES
dc.description.sponsorship The authors thank the Spanish Government (projects CTQ2011-24355, MAT2015-64139-C4-1-R, CTQ2014-58989-P, and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. M.O. thanks the Universitat Politecnica de Valencia for her FPI grant. P.D. thanks the Ministerio de Economia y Competitividad for her FPI grant (BES-2012-054066). C.C. thanks the Generalitat Valenciana for her postdoctoral contract VALi+D. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Responsive controlled-release es_ES
dc.subject Molecular-Transport es_ES
dc.subject Triggered release es_ES
dc.subject Concanavalin-A es_ES
dc.subject Folic-Acid es_ES
dc.subject System es_ES
dc.subject Encapsulation es_ES
dc.subject Design es_ES
dc.subject Drugs es_ES
dc.subject Loop es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201604104 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-24355/ES/NUEVOS NANOMATERIALES POLIFUNCIONALIZADOS PARA LA CONSTRUCCION DE BIOSENSORES DE DETECCION MULTIPLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2012-054066/ES/BES-2012-054066/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-58989-P/ES/BIONANORROBOTS QUIMICAMENTE PROGRAMADOS Y CONTROLADOS POR ENZIMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Oroval, M.; Díez, P.; Aznar, E.; Coll Merino, MC.; Marcos Martínez, MD.; Sancenón Galarza, F.; Villalonga, R.... (2017). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal. 23(6):1353-1360. https://doi.org/10.1002/chem.201604104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201604104 es_ES
dc.description.upvformatpinicio 1353 es_ES
dc.description.upvformatpfin 1360 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 6 es_ES
dc.identifier.pmid 27859880 es_ES
dc.relation.pasarela S\326114 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a es_ES
dc.description.references Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2 es_ES
dc.description.references Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u es_ES
dc.description.references Vallet-Regí, M., & Balas, F. (2008). Silica Materials for Medical Applications. The Open Biomedical Engineering Journal, 2(1), 1-9. doi:10.2174/1874120700802010001 es_ES
dc.description.references Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 es_ES
dc.description.references Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e es_ES
dc.description.references Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t es_ES
dc.description.references Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m es_ES
dc.description.references Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 es_ES
dc.description.references Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Jérôme, C., & Duguet, E. (2015). Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small, 11(19), 2323-2332. doi:10.1002/smll.201402145 es_ES
dc.description.references Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165 es_ES
dc.description.references Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u es_ES
dc.description.references Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u es_ES
dc.description.references Niedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245f es_ES
dc.description.references Zhang, X., Li, F., Guo, S., Chen, X., Wang, X., Li, J., & Gan, Y. (2014). Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials, 35(11), 3650-3665. doi:10.1016/j.biomaterials.2014.01.013 es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038 es_ES
dc.description.references Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 54(36), 10574-10578. doi:10.1002/anie.201504913 es_ES
dc.description.references Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie, 127(36), 10720-10724. doi:10.1002/ange.201504913 es_ES
dc.description.references Kavruk, M., Celikbicak, O., Ozalp, V. C., Borsa, B. A., Hernandez, F. J., Bayramoglu, G., … Arica, M. Y. (2015). Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chemical Communications, 51(40), 8492-8495. doi:10.1039/c5cc01869b es_ES
dc.description.references Chu, L.-Y. (2005). Controlled release systems for insulin delivery. Expert Opinion on Therapeutic Patents, 15(9), 1147-1155. doi:10.1517/13543776.15.9.1147 es_ES
dc.description.references Suckale, J. (2008). Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience, Volume(13), 7156. doi:10.2741/3218 es_ES
dc.description.references Diabetes Care 2014 37 es_ES
dc.description.references Pickup, J. C., Hussain, F., Evans, N. D., & Sachedina, N. (2005). In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 20(10), 1897-1902. doi:10.1016/j.bios.2004.08.016 es_ES
dc.description.references Farmer, T. G., Edgar, T. F., & Peppas, N. A. (2008). The future of open- and closed-loop insulin delivery systems. Journal of Pharmacy and Pharmacology, 60(1), 1-13. doi:10.1211/jpp.60.1.0001 es_ES
dc.description.references Carino, G. P., & Mathiowitz, E. (1999). Oral insulin delivery1Abbreviations: GI, gastrointestinal; IDDM, insulin-dependent diabetes mellitus; IU, international units; NIDDM, non-insulin-dependent diabetes mellitus; PIN, phase inversion nanoencapsulation; ZOT, zona occludens toxin.1. Advanced Drug Delivery Reviews, 35(2-3), 249-257. doi:10.1016/s0169-409x(98)00075-1 es_ES
dc.description.references Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2015). Oral insulin delivery systems using chitosan-based formulation: a review. Expert Opinion on Drug Delivery, 13(2), 223-237. doi:10.1517/17425247.2016.1107543 es_ES
dc.description.references Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43(10), 3595. doi:10.1039/c3cs60436e es_ES
dc.description.references Sato, K., Imoto, Y., Sugama, J., Seki, S., Inoue, H., Odagiri, T., … Anzai, J. (2005). Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir, 21(2), 797-799. doi:10.1021/la048059x es_ES
dc.description.references TANNA, S., SAHOTA, T., SAWICKA, K., & TAYLOR, M. (2006). The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials, 27(25), 4498-4507. doi:10.1016/j.biomaterials.2006.04.007 es_ES
dc.description.references Qi, W., Yan, X., Fei, J., Wang, A., Cui, Y., & Li, J. (2009). Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 30(14), 2799-2806. doi:10.1016/j.biomaterials.2009.01.027 es_ES
dc.description.references Ishihara, K., Kobayashi, M., Ishimaru, N., & Shinohara, I. (1984). Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polymer Journal, 16(8), 625-631. doi:10.1295/polymj.16.625 es_ES
dc.description.references Wu, Z., Zhang, X., Guo, H., Li, C., & Yu, D. (2012). An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry, 22(42), 22788. doi:10.1039/c2jm34082h es_ES
dc.description.references Liu, P., Luo, Q., Guan, Y., & Zhang, Y. (2010). Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer, 51(12), 2668-2675. doi:10.1016/j.polymer.2010.04.011 es_ES
dc.description.references Zhang, X., Guan, Y., & Zhang, Y. (2012). Dynamically bonded layer-by-layer films for self-regulated insulin release. Journal of Materials Chemistry, 22(32), 16299. doi:10.1039/c2jm33413e es_ES
dc.description.references Akhtar, N., El-Safty, S. A., Abdelsalam, M. E., & Kawarada, H. (2015). One-Pot Fabrication of Dendritic NiO@carbon-nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 4(14), 2110-2119. doi:10.1002/adhm.201500369 es_ES
dc.description.references Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831u es_ES
dc.description.references Zhao, W., Zhang, H., He, Q., Li, Y., Gu, J., Li, L., … Shi, J. (2011). A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 47(33), 9459. doi:10.1039/c1cc12740c es_ES
dc.description.references Jain, R. N., Huang, X., Das, S., Silva, R., Ivanova, V., Minko, T., & Asefa, T. (2014). Functionalized Mesoporous Silica Nanoparticles for Glucose- and pH-Stimulated Release of Insulin. Zeitschrift für anorganische und allgemeine Chemie, 640(3-4), 616-623. doi:10.1002/zaac.201300604 es_ES
dc.description.references Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049 es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822 es_ES
dc.description.references Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k es_ES
dc.description.references Mizutani, M., Yamada, Y., Nakamura, T., & Yano, K. (2008). Anomalous Pore Expansion of Highly Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Porous Ferromagnetic Composite. Chemistry of Materials, 20(14), 4777-4782. doi:10.1021/cm702792e es_ES
dc.description.references Kim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H. S., Lee, K. E., … Min, D.-H. (2011). Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 5(5), 3568-3576. doi:10.1021/nn103130q es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.description.references Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210 es_ES
dc.description.references Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017 es_ES
dc.description.references Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037 es_ES
dc.description.references Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219 es_ES
dc.description.references Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia 2006 es_ES
dc.description.references Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015 es_ES
dc.description.references Mattu, M. J., Small, G. W., & Arnold, M. A. (1997). Determination of Glucose in a Biological Matrix by Multivariate Analysis of Multiple Band-Pass-Filtered Fourier Transform Near-Infrared Interferograms. Analytical Chemistry, 69(22), 4695-4702. doi:10.1021/ac9705529 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem