- -

Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery

Mostrar el registro completo del ítem

Oroval, M.; Díez, P.; Aznar, E.; Coll Merino, MC.; Marcos Martínez, MD.; Sancenón Galarza, F.; Villalonga, R.... (2017). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal. 23(6):1353-1360. https://doi.org/10.1002/chem.201604104

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148457

Ficheros en el ítem

Metadatos del ítem

Título: Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery
Autor: Oroval, Mar Díez, Paula Aznar, Elena Coll Merino, Mª Carmen Marcos Martínez, María Dolores Sancenón Galarza, Félix Villalonga, R. Martínez-Máñez, Ramón
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] We describe herein the preparation of glucose-sensitive capped mesoporous silica nanoparticles for insulin delivery. The new material consists of an expanded-pore nanometric silica support grafted with 1-propyl-1-H- ...[+]
Palabras clave: Responsive controlled-release , Molecular-Transport , Triggered release , Concanavalin-A , Folic-Acid , System , Encapsulation , Design , Drugs , Loop
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201604104
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201604104
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
...[+]
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/MICINN//CTQ2011-24355/ES/NUEVOS NANOMATERIALES POLIFUNCIONALIZADOS PARA LA CONSTRUCCION DE BIOSENSORES DE DETECCION MULTIPLE/
info:eu-repo/grantAgreement/MINECO//BES-2012-054066/ES/BES-2012-054066/
info:eu-repo/grantAgreement/MINECO//CTQ2014-58989-P/ES/BIONANORROBOTS QUIMICAMENTE PROGRAMADOS Y CONTROLADOS POR ENZIMAS/
info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
[-]
Descripción: "This is the peer reviewed version of the following article: Oroval, Mar, Paula Díez, Elena Aznar, Carmen Coll, María Dolores Marcos, Félix Sancenón, Reynaldo Villalonga, and Ramón Martínez-Máñez. 2016. Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal 23 (6). Wiley: 1353 60. doi:10.1002/chem.201604104, which has been published in final form at https://doi.org/10.1002/chem.201604104. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The authors thank the Spanish Government (projects CTQ2011-24355, MAT2015-64139-C4-1-R, CTQ2014-58989-P, and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. ...[+]
Tipo: Artículo

References

Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a

Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2

Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u [+]
Nicole, L., Laberty-Robert, C., Rozes, L., & Sanchez, C. (2014). Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale, 6(12), 6267-6292. doi:10.1039/c4nr01788a

Beltrán-Osuna, Á. A., & Perilla, J. E. (2015). Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. Journal of Sol-Gel Science and Technology, 77(2), 480-496. doi:10.1007/s10971-015-3874-2

Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u

Vallet-Regí, M., & Balas, F. (2008). Silica Materials for Medical Applications. The Open Biomedical Engineering Journal, 2(1), 1-9. doi:10.2174/1874120700802010001

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Alberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414e

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751

Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751

Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362

Liu, J., Detrembleur, C., De Pauw-Gillet, M.-C., Mornet, S., Jérôme, C., & Duguet, E. (2015). Gold Nanorods Coated with Mesoporous Silica Shell as Drug Delivery System for Remote Near Infrared Light-Activated Release and Potential Phototherapy. Small, 11(19), 2323-2332. doi:10.1002/smll.201402145

Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165

Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u

Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u

Niedermayer, S., Weiss, V., Herrmann, A., Schmidt, A., Datz, S., Müller, K., … Bräuchle, C. (2015). Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale, 7(17), 7953-7964. doi:10.1039/c4nr07245f

Zhang, X., Li, F., Guo, S., Chen, X., Wang, X., Li, J., & Gan, Y. (2014). Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials, 35(11), 3650-3665. doi:10.1016/j.biomaterials.2014.01.013

Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086

Bhat, R., Ribes, À., Mas, N., Aznar, E., Sancenón, F., Marcos, M. D., … Martínez-Máñez, R. (2016). Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators. Langmuir, 32(5), 1195-1200. doi:10.1021/acs.langmuir.5b04038

Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 54(36), 10574-10578. doi:10.1002/anie.201504913

Yu, C., Qian, L., Uttamchandani, M., Li, L., & Yao, S. Q. (2015). Single-Vehicular Delivery of Antagomir and Small Molecules to Inhibit miR-122 Function in Hepatocellular Carcinoma Cells by using «Smart» Mesoporous Silica Nanoparticles. Angewandte Chemie, 127(36), 10720-10724. doi:10.1002/ange.201504913

Kavruk, M., Celikbicak, O., Ozalp, V. C., Borsa, B. A., Hernandez, F. J., Bayramoglu, G., … Arica, M. Y. (2015). Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chemical Communications, 51(40), 8492-8495. doi:10.1039/c5cc01869b

Chu, L.-Y. (2005). Controlled release systems for insulin delivery. Expert Opinion on Therapeutic Patents, 15(9), 1147-1155. doi:10.1517/13543776.15.9.1147

Suckale, J. (2008). Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience, Volume(13), 7156. doi:10.2741/3218

Diabetes Care 2014 37

Pickup, J. C., Hussain, F., Evans, N. D., & Sachedina, N. (2005). In vivo glucose monitoring: the clinical reality and the promise. Biosensors and Bioelectronics, 20(10), 1897-1902. doi:10.1016/j.bios.2004.08.016

Farmer, T. G., Edgar, T. F., & Peppas, N. A. (2008). The future of open- and closed-loop insulin delivery systems. Journal of Pharmacy and Pharmacology, 60(1), 1-13. doi:10.1211/jpp.60.1.0001

Carino, G. P., & Mathiowitz, E. (1999). Oral insulin delivery1Abbreviations: GI, gastrointestinal; IDDM, insulin-dependent diabetes mellitus; IU, international units; NIDDM, non-insulin-dependent diabetes mellitus; PIN, phase inversion nanoencapsulation; ZOT, zona occludens toxin.1. Advanced Drug Delivery Reviews, 35(2-3), 249-257. doi:10.1016/s0169-409x(98)00075-1

Al Rubeaan, K., Rafiullah, M., & Jayavanth, S. (2015). Oral insulin delivery systems using chitosan-based formulation: a review. Expert Opinion on Drug Delivery, 13(2), 223-237. doi:10.1517/17425247.2016.1107543

Mo, R., Jiang, T., Di, J., Tai, W., & Gu, Z. (2014). Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chemical Society Reviews, 43(10), 3595. doi:10.1039/c3cs60436e

Sato, K., Imoto, Y., Sugama, J., Seki, S., Inoue, H., Odagiri, T., … Anzai, J. (2005). Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir, 21(2), 797-799. doi:10.1021/la048059x

TANNA, S., SAHOTA, T., SAWICKA, K., & TAYLOR, M. (2006). The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials, 27(25), 4498-4507. doi:10.1016/j.biomaterials.2006.04.007

Qi, W., Yan, X., Fei, J., Wang, A., Cui, Y., & Li, J. (2009). Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 30(14), 2799-2806. doi:10.1016/j.biomaterials.2009.01.027

Ishihara, K., Kobayashi, M., Ishimaru, N., & Shinohara, I. (1984). Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polymer Journal, 16(8), 625-631. doi:10.1295/polymj.16.625

Wu, Z., Zhang, X., Guo, H., Li, C., & Yu, D. (2012). An injectable and glucose-sensitive nanogel for controlled insulin release. Journal of Materials Chemistry, 22(42), 22788. doi:10.1039/c2jm34082h

Liu, P., Luo, Q., Guan, Y., & Zhang, Y. (2010). Drug release kinetics from monolayer films of glucose-sensitive microgel. Polymer, 51(12), 2668-2675. doi:10.1016/j.polymer.2010.04.011

Zhang, X., Guan, Y., & Zhang, Y. (2012). Dynamically bonded layer-by-layer films for self-regulated insulin release. Journal of Materials Chemistry, 22(32), 16299. doi:10.1039/c2jm33413e

Akhtar, N., El-Safty, S. A., Abdelsalam, M. E., & Kawarada, H. (2015). One-Pot Fabrication of Dendritic NiO@carbon-nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 4(14), 2110-2119. doi:10.1002/adhm.201500369

Zhao, Y., Trewyn, B. G., Slowing, I. I., & Lin, V. S.-Y. (2009). Mesoporous Silica Nanoparticle-Based Double Drug Delivery System for Glucose-Responsive Controlled Release of Insulin and Cyclic AMP. Journal of the American Chemical Society, 131(24), 8398-8400. doi:10.1021/ja901831u

Zhao, W., Zhang, H., He, Q., Li, Y., Gu, J., Li, L., … Shi, J. (2011). A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. Chemical Communications, 47(33), 9459. doi:10.1039/c1cc12740c

Jain, R. N., Huang, X., Das, S., Silva, R., Ivanova, V., Minko, T., & Asefa, T. (2014). Functionalized Mesoporous Silica Nanoparticles for Glucose- and pH-Stimulated Release of Insulin. Zeitschrift für anorganische und allgemeine Chemie, 640(3-4), 616-623. doi:10.1002/zaac.201300604

Pérez-Esteve, É., Fuentes, A., Coll, C., Acosta, C., Bernardos, A., Amorós, P., … Barat, J. M. (2015). Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 202, 124-132. doi:10.1016/j.micromeso.2014.09.049

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822

Aznar, E., Villalonga, R., Giménez, C., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2013). Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 49(57), 6391. doi:10.1039/c3cc42210k

Mizutani, M., Yamada, Y., Nakamura, T., & Yano, K. (2008). Anomalous Pore Expansion of Highly Monodispersed Mesoporous Silica Spheres and Its Application to the Synthesis of Porous Ferromagnetic Composite. Chemistry of Materials, 20(14), 4777-4782. doi:10.1021/cm702792e

Kim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H. S., Lee, K. E., … Min, D.-H. (2011). Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 5(5), 3568-3576. doi:10.1021/nn103130q

Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023

Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210

Pérez-Esteve, É., Ruiz-Rico, M., de la Torre, C., Villaescusa, L. A., Sancenón, F., Marcos, M. D., … Barat, J. M. (2016). Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 196, 66-75. doi:10.1016/j.foodchem.2015.09.017

Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037

Radhakrishnan, K., Gupta, S., Gnanadhas, D. P., Ramamurthy, P. C., Chakravortty, D., & Raichur, A. M. (2013). Protamine-Capped Mesoporous Silica Nanoparticles for Biologically Triggered Drug Release. Particle & Particle Systems Characterization, 31(4), 449-458. doi:10.1002/ppsc.201300219

Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia 2006

Thomas, C. C., & Philipson, L. H. (2015). Update on Diabetes Classification. Medical Clinics of North America, 99(1), 1-16. doi:10.1016/j.mcna.2014.08.015

Mattu, M. J., Small, G. W., & Arnold, M. A. (1997). Determination of Glucose in a Biological Matrix by Multivariate Analysis of Multiple Band-Pass-Filtered Fourier Transform Near-Infrared Interferograms. Analytical Chemistry, 69(22), 4695-4702. doi:10.1021/ac9705529

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem