- -

A fully automated method for segmentation and classification of local field potential recordings. Preliminary results

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A fully automated method for segmentation and classification of local field potential recordings. Preliminary results

Show full item record

Díaz-Parra, A.; Canals, S.; Moratal, D. (2017). A fully automated method for segmentation and classification of local field potential recordings. Preliminary results. Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society. 426-429. https://doi.org/10.1109/EMBC.2017.8036853

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148522

Files in this item

Item Metadata

Title: A fully automated method for segmentation and classification of local field potential recordings. Preliminary results
Author: Díaz-Parra, Antonio Canals, S. Moratal, David
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Identification of brain states measured with electrophysiological methods such as electroencephalography and local field potential (LFP) recordings is of great importance in numerous neuroscientific applications. For ...[+]
Subjects: Signals , EEG
Copyrigths: Cerrado
Source:
Proceedings Intenational Anual Conference of IEEE Engineering in Medicine and Biology Society. (issn: 1557-170X )
DOI: 10.1109/EMBC.2017.8036853
Publisher:
IEEE Engineering in Medicine and Biology Society
Publisher version: https://doi.org/10.1109/EMBC.2017.8036853
Conference name: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2017)
Conference place: Jeju Island, South Korea
Conference date: Julio 11-15,2017
Project ID:
info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/
info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/
info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/
info:eu-repo/grantAgreement/MECD//FPU13%2F01475/ES/FPU13%2F01475/
Thanks:
Research supported by the Spanish Ministerio de Economia y Competitividad (MINECO) under grants BFU2015-64380-C2-1-R and BFU2015-64380-C2-2R and European Union's Horizon 2020 research and innovation programme under grant ...[+]
Type: Artículo Comunicación en congreso Capítulo de libro

recommendations

 

This item appears in the following Collection(s)

Show full item record