- -

Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes

Mostrar el registro completo del ítem

Roeschlin, R.; Favaro, MA.; Chiesa, MA.; Alemano, S.; Vojnov, A.; Castagnaro, A.; Filippone, MP.... (2017). Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Molecular Plant Pathology. 18(9):1267-1281. https://doi.org/10.1111/mpp.12489

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148681

Ficheros en el ítem

Metadatos del ítem

Título: Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes
Autor: Roeschlin, Roxana Favaro, Maria Alejandra Chiesa, Maria Amalia Alemano, Sergio Vojnov, Adrian Castagnaro, Atilio Filippone, Maria Paula Gmitter, Jr.F. Gadea Vacas, José Marano, Maria Rosa
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural ...[+]
Palabras clave: Autophagy , Biofilm formation , Biological control , Citrus canker resistance , Hypersensitive response , Salicylic acid , Secondary metabolites
Derechos de uso: Reserva de todos los derechos
Fuente:
Molecular Plant Pathology. (issn: 1464-6722 )
DOI: 10.1111/mpp.12489
Editorial:
Blackwell Publishing
Versión del editor: https://doi.org/10.1111/mpp.12489
Código del Proyecto:
info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1833/AR/Estrategias Biotecnológicas para el manejo de la Cancrosis Bacteriana de los Cítricos/
Agradecimientos:
This work was principally supported by the Agencia Nacional de Promocion Cientifica y Tecnologica (PICT-2011-1833) to M.R.M. and by a grant from the Florida Citrus Research and Development Foundation to F.G.G. and M.R.M. ...[+]
Tipo: Artículo

References

Álvarez, C., García, I., Moreno, I., Pérez-Pérez, M. E., Crespo, J. L., Romero, L. C., & Gotor, C. (2012). Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis. The Plant Cell, 24(11), 4621-4634. doi:10.1105/tpc.112.105403

Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2013). Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae. Plant Physiology, 164(2), 1093-1107. doi:10.1104/pp.113.227637

BILGIN, D. D., ZAVALA, J. A., ZHU, J., CLOUGH, S. J., ORT, D. R., & DeLUCIA, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33(10), 1597-1613. doi:10.1111/j.1365-3040.2010.02167.x [+]
Álvarez, C., García, I., Moreno, I., Pérez-Pérez, M. E., Crespo, J. L., Romero, L. C., & Gotor, C. (2012). Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis. The Plant Cell, 24(11), 4621-4634. doi:10.1105/tpc.112.105403

Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2013). Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae. Plant Physiology, 164(2), 1093-1107. doi:10.1104/pp.113.227637

BILGIN, D. D., ZAVALA, J. A., ZHU, J., CLOUGH, S. J., ORT, D. R., & DeLUCIA, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33(10), 1597-1613. doi:10.1111/j.1365-3040.2010.02167.x

Castillo, P., Escalante, M., Gallardo, M., Alemano, S., & Abdala, G. (2013). Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiologiae Plantarum, 35(7), 2299-2309. doi:10.1007/s11738-013-1267-0

CERNADAS, R. A., CAMILLO, L. R., & BENEDETTI, C. E. (2008). Transcriptional analysis of the sweet orange interaction with the citrus canker pathogensXanthomonas axonopodispv.citriandXanthomonas axonopodispv.aurantifolii. Molecular Plant Pathology, 9(5), 609-631. doi:10.1111/j.1364-3703.2008.00486.x

Chen, P.-S., Wang, L.-Y., Chen, Y.-J., Tzeng, K.-C., Chang, S.-C., Chung, K.-R., & Lee, M.-H. (2012). Understanding cellular defence in kumquat and calamondin to citrus canker caused by Xanthomonas citri subsp. citri. Physiological and Molecular Plant Pathology, 79, 1-12. doi:10.1016/j.pmpp.2012.03.001

Chi, Y. H., Paeng, S. K., Kim, M. J., Hwang, G. Y., Melencion, S. M. B., Oh, H. T., & Lee, S. Y. (2013). Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00277

Chiesa, M. A., Siciliano, M. F., Ornella, L., Roeschlin, R. A., Favaro, M. A., Delgado, N. P., … Marano, M. R. (2013). Characterization of a Variant of Xanthomonas citri subsp. citri that Triggers a Host-Specific Defense Response. Phytopathology®, 103(6), 555-564. doi:10.1094/phyto-11-12-0287-r

Deng, Z. N., Xu, L., Li, D. Z., Long, G. Y., Liu, L. P., Fang, F., & Shu, G. P. (2009). Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. citri). Plant Breeding, 129(3), 341-345. doi:10.1111/j.1439-0523.2009.01695.x

Van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., … Bozhkov, P. V. (2011). Morphological classification of plant cell deaths. Cell Death & Differentiation, 18(8), 1241-1246. doi:10.1038/cdd.2011.36

Duan, Y. P., Castañeda, A., Zhao, G., Erdos, G., & Gabriel, D. W. (1999). Expression of a Single, Host-Specific, Bacterial Pathogenicity Gene in Plant Cells Elicits Division, Enlargement, and Cell Death. Molecular Plant-Microbe Interactions®, 12(6), 556-560. doi:10.1094/mpmi.1999.12.6.556

Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884b

Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., … Marano, M. R. (2010). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394-407. doi:10.1111/j.1467-7652.2010.00555.x

Escalon, A., Javegny, S., Vernière, C., Noël, L. D., Vital, K., Poussier, S., … Gagnevin, L. (2013). Variations in type III effector repertoires, pathological phenotypes and host range ofXanthomonas citripv.citripathotypes. Molecular Plant Pathology, 14(5), 483-496. doi:10.1111/mpp.12019

Falcone Ferreyra, M. L., Rius, S., Emiliani, J., Pourcel, L., Feller, A., Morohashi, K., … Grotewold, E. (2010). Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal, 62(1), 77-91. doi:10.1111/j.1365-313x.2010.04133.x

Falcone Ferreyra, M. L., Emiliani, J., Rodriguez, E. J., Campos-Bermudez, V. A., Grotewold, E., & Casati, P. (2015). The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. Plant Physiology, 169(2), 1090-1107. doi:10.1104/pp.15.00515

Favaro, M. A., Micheloud, N. G., Roeschlin, R. A., Chiesa, M. A., Castagnaro, A. P., Vojnov, A. A., … Marano, M. R. (2014). Surface Barriers of Mandarin ‘Okitsu’ Leaves Make a Major Contribution to Canker Disease Resistance. Phytopathology®, 104(9), 970-976. doi:10.1094/phyto-10-13-0277-r

Febres, V. J., Khalaf, A., Gmitter, F. G., & Moore, G. A. (2012). EVALUATING GENE EXPRESSION RESPONSES OF CITRUS TO TWO TYPES OF DEFENSE INDUCERS USING A NEWLY DEVELOPED CITRUS AGILENT MICROARRAY. Acta Horticulturae, (929), 59-64. doi:10.17660/actahortic.2012.929.7

Fu, X.-Z., Gong, X.-Q., Zhang, Y.-X., Wang, Y., & Liu, J.-H. (2012). Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance. PLoS ONE, 7(7), e41790. doi:10.1371/journal.pone.0041790

Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606

Graham, J. H., Gottwald, T. R., Cubero, J., & Achor, D. S. (2003). Xanthomonas axonopodis pv. citri : factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5(1), 1-15. doi:10.1046/j.1364-3703.2004.00197.x

Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., … Hara-Nishimura, I. (2009). A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes & Development, 23(21), 2496-2506. doi:10.1101/gad.1825209

Hauck, P., Thilmony, R., & He, S. Y. (2003). APseudomonas syringaetype III effector suppresses cell wall-based extracellular defense in susceptibleArabidopsisplants. Proceedings of the National Academy of Sciences, 100(14), 8577-8582. doi:10.1073/pnas.1431173100

Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., … Molina, A. (2007). Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. The Plant Cell, 19(3), 890-903. doi:10.1105/tpc.106.048058

Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D. I., Petersen, N. H. T., Mattsson, O., … Petersen, M. (2009). Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 137(4), 773-783. doi:10.1016/j.cell.2009.02.036

Hofius, D., Munch, D., Bressendorff, S., Mundy, J., & Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death & Differentiation, 18(8), 1257-1262. doi:10.1038/cdd.2011.43

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286

Kabbage, M., Williams, B., & Dickman, M. B. (2013). Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9(4), e1003287. doi:10.1371/journal.ppat.1003287

Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., … Zipfel, C. (2014). Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 54(1), 43-55. doi:10.1016/j.molcel.2014.02.021

KARPIŃSKI, S., SZECHYŃSKA-HEBDA, M., WITUSZYŃSKA, W., & BURDIAK, P. (2012). Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell & Environment, 36(4), 736-744. doi:10.1111/pce.12018

Kazan, K., & Lyons, R. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. The Plant Cell, 26(6), 2285-2309. doi:10.1105/tpc.114.125419

Khalaf, A. A., Gmitter, F. G., Conesa, A., Dopazo, J., & Moore, G. A. (2011). Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-159

Koch, E., & Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 2(5), 437-445. doi:10.1105/tpc.2.5.437

Lee, I. J., Kim, K. W., Hyun, J. W., Lee, Y. H., & Park, E. W. (2009). Comparative ultrastructure of nonwounded Mexican lime and Yuzu leaves infected with the citrus canker bacteriumXanthomonas citripv.citri. Microscopy Research and Technique, 72(7), 507-516. doi:10.1002/jemt.20707

Lenz, H. D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., … Nürnberger, T. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal, 66(5), 818-830. doi:10.1111/j.1365-313x.2011.04546.x

Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., & Dinesh-Kumar, S. P. (2005). Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell, 121(4), 567-577. doi:10.1016/j.cell.2005.03.007

Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., & Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. The Plant Journal, 51(6), 941-954. doi:10.1111/j.1365-313x.2007.03191.x

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

LUX, A., MORITA, S., ABE, J., & ITO, K. (2005). An Improved Method for Clearing and Staining Free-hand Sections and Whole-mount Samples*. Annals of Botany, 96(6), 989-996. doi:10.1093/aob/mci266

Macho, A. P., & Zipfel, C. (2015). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14-22. doi:10.1016/j.mib.2014.10.009

Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., … Machado, M. A. (2012). Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE, 7(2), e31263. doi:10.1371/journal.pone.0031263

Malamud, F., Torres, P. S., Roeschlin, R., Rigano, L. A., Enrique, R., Bonomi, H. R., … Vojnov, A. A. (2011). The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology, 157(3), 819-829. doi:10.1099/mic.0.044255-0

Mammarella, N. D., Cheng, Z., Fu, Z. Q., Daudi, A., Bolwell, G. P., Dong, X., & Ausubel, F. M. (2015). Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 112, 110-121. doi:10.1016/j.phytochem.2014.07.010

Marano, M. R., & Carrillo, N. (1992). Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits. Plant Physiology, 100(3), 1103-1113. doi:10.1104/pp.100.3.1103

Martinez-Godoy, M. A., Mauri, N., Juarez, J., Marques, M. C., Santiago, J., Forment, J., & Gadea, J. (2008). A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics, 9(1), 318. doi:10.1186/1471-2164-9-318

Mazza, C. A., Boccalandro, H. E., Giordano, C. V., Battista, D., Scopel, A. L., & Ballaré, C. L. (2000). Functional Significance and Induction by Solar Radiation of Ultraviolet-Absorbing Sunscreens in Field-Grown Soybean Crops. Plant Physiology, 122(1), 117-126. doi:10.1104/pp.122.1.117

Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., … Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388

Pourcel, L., Irani, N. G., Koo, A. J. K., Bohorquez-Restrepo, A., Howe, G. A., & Grotewold, E. (2013). A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. The Plant Journal, 74(3), 383-397. doi:10.1111/tpj.12129

Rigano, L. A., Siciliano, F., Enrique, R., Sendín, L., Filippone, P., Torres, P. S., … Marano, M. R. (2007). Biofilm Formation, Epiphytic Fitness, and Canker Development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions®, 20(10), 1222-1230. doi:10.1094/mpmi-20-10-1222

Rojo, E., Martı́n, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., … Raikhel, N. V. (2004). VPEγ Exhibits a Caspase-like Activity that Contributes to Defense against Pathogens. Current Biology, 14(21), 1897-1906. doi:10.1016/j.cub.2004.09.056

RYBAK, M., MINSAVAGE, G. V., STALL, R. E., & JONES, J. B. (2009). Identification ofXanthomonas citrissp.citrihost specificity genes in a heterologous expression host. Molecular Plant Pathology, 10(2), 249-262. doi:10.1111/j.1364-3703.2008.00528.x

Schaad, N. W., Postnikova, E., Lacy, G., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2006). Emended classification of xanthomonad pathogens on citrus. Systematic and Applied Microbiology, 29(8), 690-695. doi:10.1016/j.syapm.2006.08.001

Schaad, N. W., Postnikova, E., Lacy, G. H., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2005). Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and «var. fuscans» of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Systematic and Applied Microbiology, 28(6), 494-518. doi:10.1016/j.syapm.2005.03.017

Seay, M., & Dinesh-Kumar, S. P. (2005). Life After Death: Are Autophagy Genes Involved in Cell Death and Survival During Plant Innate Immune Responses? Autophagy, 1(3), 185-186. doi:10.4161/auto.1.3.2080

Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., & Kangasjärvi, J. (2012). ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00292

Shiotani, H., Fujikawa, T., Ishihara, H., Tsuyumu, S., & Ozaki, K. (2007). A pthA Homolog from Xanthomonas axonopodis pv. citri Responsible for Host-Specific Suppression of Virulence. Journal of Bacteriology, 189(8), 3271-3279. doi:10.1128/jb.01790-06

Soprano, A. S., Abe, V. Y., Smetana, J. H. C., & Benedetti, C. E. (2013). Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development. Plant Physiology, 163(1), 232-242. doi:10.1104/pp.113.224642

Sun, X., Stall, R. E., Jones, J. B., Cubero, J., Gottwald, T. R., Graham, J. H., … Sutton, B. D. (2004). Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 88(11), 1179-1188. doi:10.1094/pdis.2004.88.11.1179

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800

Teh, O.-K., & Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65(5), 1297-1312. doi:10.1093/jxb/ert441

Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498

Vanholme, R., Storme, V., Vanholme, B., Sundin, L., Christensen, J. H., Goeminne, G., … Boerjan, W. (2012). A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis. The Plant Cell, 24(9), 3506-3529. doi:10.1105/tpc.112.102574

Vernière, C., Hartung, J. S., Pruvost, O. P., Civerolo, E. L., Alvarez, A. M., Maestri, P., & Luisetti, J. (1998). European Journal of Plant Pathology, 104(5), 477-487. doi:10.1023/a:1008676508688

Voigt, C. A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00168

Vojnov, A. A., Morais do Amaral, A., Dow, J. M., Castagnaro, A. P., & Marano, M. R. (2010). Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host. Applied Microbiology and Biotechnology, 87(2), 467-477. doi:10.1007/s00253-010-2631-2

Wrzaczek, M., Brosché, M., & Kangasjärvi, J. (2013). ROS signaling loops — production, perception, regulation. Current Opinion in Plant Biology, 16(5), 575-582. doi:10.1016/j.pbi.2013.07.002

Xia, P., Wang, S., Du, Y., Zhao, Z., Shi, L., Sun, L., … Fan, Z. (2013). WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. The EMBO Journal, 32(20), 2685-2696. doi:10.1038/emboj.2013.189

Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., & Ohsumi, Y. (2004). Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. The Plant Cell, 16(11), 2967-2983. doi:10.1105/tpc.104.025395

Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., … Shirasu, K. (2009). Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis. The Plant Cell, 21(9), 2914-2927. doi:10.1105/tpc.109.068635

Yun, M. H., Torres, P. S., Oirdi, M. E., Rigano, L. A., Gonzalez-Lamothe, R., Marano, M. R., … Vojnov, A. A. (2006). Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition. Plant Physiology, 141(1), 178-187. doi:10.1104/pp.105.074542

Zhou, J., Yu, J.-Q., & Chen, Z. (2014). The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 15(6), 637-645. doi:10.1111/mpp.12118

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem