Mostrar el registro sencillo del ítem
dc.contributor.author | Roeschlin, Roxana | es_ES |
dc.contributor.author | Favaro, Maria Alejandra | es_ES |
dc.contributor.author | Chiesa, Maria Amalia | es_ES |
dc.contributor.author | Alemano, Sergio | es_ES |
dc.contributor.author | Vojnov, Adrian | es_ES |
dc.contributor.author | Castagnaro, Atilio | es_ES |
dc.contributor.author | Filippone, Maria Paula | es_ES |
dc.contributor.author | Gmitter, Jr.F. | es_ES |
dc.contributor.author | Gadea Vacas, José | es_ES |
dc.contributor.author | Marano, Maria Rosa | es_ES |
dc.date.accessioned | 2020-07-25T03:31:15Z | |
dc.date.available | 2020-07-25T03:31:15Z | |
dc.date.issued | 2017-12 | es_ES |
dc.identifier.issn | 1464-6722 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148681 | |
dc.description.abstract | [EN] Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri A(T), that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri A(T) was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri A(T) triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri A(T) and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease. | es_ES |
dc.description.sponsorship | This work was principally supported by the Agencia Nacional de Promocion Cientifica y Tecnologica (PICT-2011-1833) to M.R.M. and by a grant from the Florida Citrus Research and Development Foundation to F.G.G. and M.R.M. M.A.C., A.A.V., A.P.C., M.P.F. and M.R.M. are Career Investigators of the Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Molecular Plant Pathology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Autophagy | es_ES |
dc.subject | Biofilm formation | es_ES |
dc.subject | Biological control | es_ES |
dc.subject | Citrus canker resistance | es_ES |
dc.subject | Hypersensitive response | es_ES |
dc.subject | Salicylic acid | es_ES |
dc.subject | Secondary metabolites | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/mpp.12489 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1833/AR/Estrategias Biotecnológicas para el manejo de la Cancrosis Bacteriana de los Cítricos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Roeschlin, R.; Favaro, MA.; Chiesa, MA.; Alemano, S.; Vojnov, A.; Castagnaro, A.; Filippone, MP.... (2017). Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Molecular Plant Pathology. 18(9):1267-1281. https://doi.org/10.1111/mpp.12489 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/mpp.12489 | es_ES |
dc.description.upvformatpinicio | 1267 | es_ES |
dc.description.upvformatpfin | 1281 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 27647752 | es_ES |
dc.identifier.pmcid | PMC6638218 | es_ES |
dc.relation.pasarela | S\324209 | es_ES |
dc.contributor.funder | Citrus Research and Development Foundation | es_ES |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.description.references | Álvarez, C., García, I., Moreno, I., Pérez-Pérez, M. E., Crespo, J. L., Romero, L. C., & Gotor, C. (2012). Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis. The Plant Cell, 24(11), 4621-4634. doi:10.1105/tpc.112.105403 | es_ES |
dc.description.references | Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2013). Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae. Plant Physiology, 164(2), 1093-1107. doi:10.1104/pp.113.227637 | es_ES |
dc.description.references | BILGIN, D. D., ZAVALA, J. A., ZHU, J., CLOUGH, S. J., ORT, D. R., & DeLUCIA, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33(10), 1597-1613. doi:10.1111/j.1365-3040.2010.02167.x | es_ES |
dc.description.references | Castillo, P., Escalante, M., Gallardo, M., Alemano, S., & Abdala, G. (2013). Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiologiae Plantarum, 35(7), 2299-2309. doi:10.1007/s11738-013-1267-0 | es_ES |
dc.description.references | CERNADAS, R. A., CAMILLO, L. R., & BENEDETTI, C. E. (2008). Transcriptional analysis of the sweet orange interaction with the citrus canker pathogensXanthomonas axonopodispv.citriandXanthomonas axonopodispv.aurantifolii. Molecular Plant Pathology, 9(5), 609-631. doi:10.1111/j.1364-3703.2008.00486.x | es_ES |
dc.description.references | Chen, P.-S., Wang, L.-Y., Chen, Y.-J., Tzeng, K.-C., Chang, S.-C., Chung, K.-R., & Lee, M.-H. (2012). Understanding cellular defence in kumquat and calamondin to citrus canker caused by Xanthomonas citri subsp. citri. Physiological and Molecular Plant Pathology, 79, 1-12. doi:10.1016/j.pmpp.2012.03.001 | es_ES |
dc.description.references | Chi, Y. H., Paeng, S. K., Kim, M. J., Hwang, G. Y., Melencion, S. M. B., Oh, H. T., & Lee, S. Y. (2013). Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00277 | es_ES |
dc.description.references | Chiesa, M. A., Siciliano, M. F., Ornella, L., Roeschlin, R. A., Favaro, M. A., Delgado, N. P., … Marano, M. R. (2013). Characterization of a Variant of Xanthomonas citri subsp. citri that Triggers a Host-Specific Defense Response. Phytopathology®, 103(6), 555-564. doi:10.1094/phyto-11-12-0287-r | es_ES |
dc.description.references | Deng, Z. N., Xu, L., Li, D. Z., Long, G. Y., Liu, L. P., Fang, F., & Shu, G. P. (2009). Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. citri). Plant Breeding, 129(3), 341-345. doi:10.1111/j.1439-0523.2009.01695.x | es_ES |
dc.description.references | Van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., … Bozhkov, P. V. (2011). Morphological classification of plant cell deaths. Cell Death & Differentiation, 18(8), 1241-1246. doi:10.1038/cdd.2011.36 | es_ES |
dc.description.references | Duan, Y. P., Castañeda, A., Zhao, G., Erdos, G., & Gabriel, D. W. (1999). Expression of a Single, Host-Specific, Bacterial Pathogenicity Gene in Plant Cells Elicits Division, Enlargement, and Cell Death. Molecular Plant-Microbe Interactions®, 12(6), 556-560. doi:10.1094/mpmi.1999.12.6.556 | es_ES |
dc.description.references | Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884b | es_ES |
dc.description.references | Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., … Marano, M. R. (2010). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394-407. doi:10.1111/j.1467-7652.2010.00555.x | es_ES |
dc.description.references | Escalon, A., Javegny, S., Vernière, C., Noël, L. D., Vital, K., Poussier, S., … Gagnevin, L. (2013). Variations in type III effector repertoires, pathological phenotypes and host range ofXanthomonas citripv.citripathotypes. Molecular Plant Pathology, 14(5), 483-496. doi:10.1111/mpp.12019 | es_ES |
dc.description.references | Falcone Ferreyra, M. L., Rius, S., Emiliani, J., Pourcel, L., Feller, A., Morohashi, K., … Grotewold, E. (2010). Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal, 62(1), 77-91. doi:10.1111/j.1365-313x.2010.04133.x | es_ES |
dc.description.references | Falcone Ferreyra, M. L., Emiliani, J., Rodriguez, E. J., Campos-Bermudez, V. A., Grotewold, E., & Casati, P. (2015). The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. Plant Physiology, 169(2), 1090-1107. doi:10.1104/pp.15.00515 | es_ES |
dc.description.references | Favaro, M. A., Micheloud, N. G., Roeschlin, R. A., Chiesa, M. A., Castagnaro, A. P., Vojnov, A. A., … Marano, M. R. (2014). Surface Barriers of Mandarin ‘Okitsu’ Leaves Make a Major Contribution to Canker Disease Resistance. Phytopathology®, 104(9), 970-976. doi:10.1094/phyto-10-13-0277-r | es_ES |
dc.description.references | Febres, V. J., Khalaf, A., Gmitter, F. G., & Moore, G. A. (2012). EVALUATING GENE EXPRESSION RESPONSES OF CITRUS TO TWO TYPES OF DEFENSE INDUCERS USING A NEWLY DEVELOPED CITRUS AGILENT MICROARRAY. Acta Horticulturae, (929), 59-64. doi:10.17660/actahortic.2012.929.7 | es_ES |
dc.description.references | Fu, X.-Z., Gong, X.-Q., Zhang, Y.-X., Wang, Y., & Liu, J.-H. (2012). Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance. PLoS ONE, 7(7), e41790. doi:10.1371/journal.pone.0041790 | es_ES |
dc.description.references | Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606 | es_ES |
dc.description.references | Graham, J. H., Gottwald, T. R., Cubero, J., & Achor, D. S. (2003). Xanthomonas axonopodis pv. citri : factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5(1), 1-15. doi:10.1046/j.1364-3703.2004.00197.x | es_ES |
dc.description.references | Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., … Hara-Nishimura, I. (2009). A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes & Development, 23(21), 2496-2506. doi:10.1101/gad.1825209 | es_ES |
dc.description.references | Hauck, P., Thilmony, R., & He, S. Y. (2003). APseudomonas syringaetype III effector suppresses cell wall-based extracellular defense in susceptibleArabidopsisplants. Proceedings of the National Academy of Sciences, 100(14), 8577-8582. doi:10.1073/pnas.1431173100 | es_ES |
dc.description.references | Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., … Molina, A. (2007). Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. The Plant Cell, 19(3), 890-903. doi:10.1105/tpc.106.048058 | es_ES |
dc.description.references | Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D. I., Petersen, N. H. T., Mattsson, O., … Petersen, M. (2009). Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 137(4), 773-783. doi:10.1016/j.cell.2009.02.036 | es_ES |
dc.description.references | Hofius, D., Munch, D., Bressendorff, S., Mundy, J., & Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death & Differentiation, 18(8), 1257-1262. doi:10.1038/cdd.2011.43 | es_ES |
dc.description.references | Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 | es_ES |
dc.description.references | Kabbage, M., Williams, B., & Dickman, M. B. (2013). Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9(4), e1003287. doi:10.1371/journal.ppat.1003287 | es_ES |
dc.description.references | Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., … Zipfel, C. (2014). Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 54(1), 43-55. doi:10.1016/j.molcel.2014.02.021 | es_ES |
dc.description.references | KARPIŃSKI, S., SZECHYŃSKA-HEBDA, M., WITUSZYŃSKA, W., & BURDIAK, P. (2012). Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell & Environment, 36(4), 736-744. doi:10.1111/pce.12018 | es_ES |
dc.description.references | Kazan, K., & Lyons, R. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. The Plant Cell, 26(6), 2285-2309. doi:10.1105/tpc.114.125419 | es_ES |
dc.description.references | Khalaf, A. A., Gmitter, F. G., Conesa, A., Dopazo, J., & Moore, G. A. (2011). Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-159 | es_ES |
dc.description.references | Koch, E., & Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 2(5), 437-445. doi:10.1105/tpc.2.5.437 | es_ES |
dc.description.references | Lee, I. J., Kim, K. W., Hyun, J. W., Lee, Y. H., & Park, E. W. (2009). Comparative ultrastructure of nonwounded Mexican lime and Yuzu leaves infected with the citrus canker bacteriumXanthomonas citripv.citri. Microscopy Research and Technique, 72(7), 507-516. doi:10.1002/jemt.20707 | es_ES |
dc.description.references | Lenz, H. D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., … Nürnberger, T. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal, 66(5), 818-830. doi:10.1111/j.1365-313x.2011.04546.x | es_ES |
dc.description.references | Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., & Dinesh-Kumar, S. P. (2005). Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell, 121(4), 567-577. doi:10.1016/j.cell.2005.03.007 | es_ES |
dc.description.references | Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., & Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. The Plant Journal, 51(6), 941-954. doi:10.1111/j.1365-313x.2007.03191.x | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | LUX, A., MORITA, S., ABE, J., & ITO, K. (2005). An Improved Method for Clearing and Staining Free-hand Sections and Whole-mount Samples*. Annals of Botany, 96(6), 989-996. doi:10.1093/aob/mci266 | es_ES |
dc.description.references | Macho, A. P., & Zipfel, C. (2015). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14-22. doi:10.1016/j.mib.2014.10.009 | es_ES |
dc.description.references | Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., … Machado, M. A. (2012). Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE, 7(2), e31263. doi:10.1371/journal.pone.0031263 | es_ES |
dc.description.references | Malamud, F., Torres, P. S., Roeschlin, R., Rigano, L. A., Enrique, R., Bonomi, H. R., … Vojnov, A. A. (2011). The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology, 157(3), 819-829. doi:10.1099/mic.0.044255-0 | es_ES |
dc.description.references | Mammarella, N. D., Cheng, Z., Fu, Z. Q., Daudi, A., Bolwell, G. P., Dong, X., & Ausubel, F. M. (2015). Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 112, 110-121. doi:10.1016/j.phytochem.2014.07.010 | es_ES |
dc.description.references | Marano, M. R., & Carrillo, N. (1992). Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits. Plant Physiology, 100(3), 1103-1113. doi:10.1104/pp.100.3.1103 | es_ES |
dc.description.references | Martinez-Godoy, M. A., Mauri, N., Juarez, J., Marques, M. C., Santiago, J., Forment, J., & Gadea, J. (2008). A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics, 9(1), 318. doi:10.1186/1471-2164-9-318 | es_ES |
dc.description.references | Mazza, C. A., Boccalandro, H. E., Giordano, C. V., Battista, D., Scopel, A. L., & Ballaré, C. L. (2000). Functional Significance and Induction by Solar Radiation of Ultraviolet-Absorbing Sunscreens in Field-Grown Soybean Crops. Plant Physiology, 122(1), 117-126. doi:10.1104/pp.122.1.117 | es_ES |
dc.description.references | Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., … Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388 | es_ES |
dc.description.references | Pourcel, L., Irani, N. G., Koo, A. J. K., Bohorquez-Restrepo, A., Howe, G. A., & Grotewold, E. (2013). A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. The Plant Journal, 74(3), 383-397. doi:10.1111/tpj.12129 | es_ES |
dc.description.references | Rigano, L. A., Siciliano, F., Enrique, R., Sendín, L., Filippone, P., Torres, P. S., … Marano, M. R. (2007). Biofilm Formation, Epiphytic Fitness, and Canker Development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions®, 20(10), 1222-1230. doi:10.1094/mpmi-20-10-1222 | es_ES |
dc.description.references | Rojo, E., Martı́n, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., … Raikhel, N. V. (2004). VPEγ Exhibits a Caspase-like Activity that Contributes to Defense against Pathogens. Current Biology, 14(21), 1897-1906. doi:10.1016/j.cub.2004.09.056 | es_ES |
dc.description.references | RYBAK, M., MINSAVAGE, G. V., STALL, R. E., & JONES, J. B. (2009). Identification ofXanthomonas citrissp.citrihost specificity genes in a heterologous expression host. Molecular Plant Pathology, 10(2), 249-262. doi:10.1111/j.1364-3703.2008.00528.x | es_ES |
dc.description.references | Schaad, N. W., Postnikova, E., Lacy, G., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2006). Emended classification of xanthomonad pathogens on citrus. Systematic and Applied Microbiology, 29(8), 690-695. doi:10.1016/j.syapm.2006.08.001 | es_ES |
dc.description.references | Schaad, N. W., Postnikova, E., Lacy, G. H., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2005). Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and «var. fuscans» of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Systematic and Applied Microbiology, 28(6), 494-518. doi:10.1016/j.syapm.2005.03.017 | es_ES |
dc.description.references | Seay, M., & Dinesh-Kumar, S. P. (2005). Life After Death: Are Autophagy Genes Involved in Cell Death and Survival During Plant Innate Immune Responses? Autophagy, 1(3), 185-186. doi:10.4161/auto.1.3.2080 | es_ES |
dc.description.references | Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., & Kangasjärvi, J. (2012). ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00292 | es_ES |
dc.description.references | Shiotani, H., Fujikawa, T., Ishihara, H., Tsuyumu, S., & Ozaki, K. (2007). A pthA Homolog from Xanthomonas axonopodis pv. citri Responsible for Host-Specific Suppression of Virulence. Journal of Bacteriology, 189(8), 3271-3279. doi:10.1128/jb.01790-06 | es_ES |
dc.description.references | Soprano, A. S., Abe, V. Y., Smetana, J. H. C., & Benedetti, C. E. (2013). Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development. Plant Physiology, 163(1), 232-242. doi:10.1104/pp.113.224642 | es_ES |
dc.description.references | Sun, X., Stall, R. E., Jones, J. B., Cubero, J., Gottwald, T. R., Graham, J. H., … Sutton, B. D. (2004). Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 88(11), 1179-1188. doi:10.1094/pdis.2004.88.11.1179 | es_ES |
dc.description.references | Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 | es_ES |
dc.description.references | Teh, O.-K., & Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65(5), 1297-1312. doi:10.1093/jxb/ert441 | es_ES |
dc.description.references | Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 | es_ES |
dc.description.references | Vanholme, R., Storme, V., Vanholme, B., Sundin, L., Christensen, J. H., Goeminne, G., … Boerjan, W. (2012). A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis. The Plant Cell, 24(9), 3506-3529. doi:10.1105/tpc.112.102574 | es_ES |
dc.description.references | Vernière, C., Hartung, J. S., Pruvost, O. P., Civerolo, E. L., Alvarez, A. M., Maestri, P., & Luisetti, J. (1998). European Journal of Plant Pathology, 104(5), 477-487. doi:10.1023/a:1008676508688 | es_ES |
dc.description.references | Voigt, C. A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00168 | es_ES |
dc.description.references | Vojnov, A. A., Morais do Amaral, A., Dow, J. M., Castagnaro, A. P., & Marano, M. R. (2010). Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host. Applied Microbiology and Biotechnology, 87(2), 467-477. doi:10.1007/s00253-010-2631-2 | es_ES |
dc.description.references | Wrzaczek, M., Brosché, M., & Kangasjärvi, J. (2013). ROS signaling loops — production, perception, regulation. Current Opinion in Plant Biology, 16(5), 575-582. doi:10.1016/j.pbi.2013.07.002 | es_ES |
dc.description.references | Xia, P., Wang, S., Du, Y., Zhao, Z., Shi, L., Sun, L., … Fan, Z. (2013). WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. The EMBO Journal, 32(20), 2685-2696. doi:10.1038/emboj.2013.189 | es_ES |
dc.description.references | Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., & Ohsumi, Y. (2004). Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. The Plant Cell, 16(11), 2967-2983. doi:10.1105/tpc.104.025395 | es_ES |
dc.description.references | Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., … Shirasu, K. (2009). Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis. The Plant Cell, 21(9), 2914-2927. doi:10.1105/tpc.109.068635 | es_ES |
dc.description.references | Yun, M. H., Torres, P. S., Oirdi, M. E., Rigano, L. A., Gonzalez-Lamothe, R., Marano, M. R., … Vojnov, A. A. (2006). Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition. Plant Physiology, 141(1), 178-187. doi:10.1104/pp.105.074542 | es_ES |
dc.description.references | Zhou, J., Yu, J.-Q., & Chen, Z. (2014). The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 15(6), 637-645. doi:10.1111/mpp.12118 | es_ES |