- -

Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roeschlin, Roxana es_ES
dc.contributor.author Favaro, Maria Alejandra es_ES
dc.contributor.author Chiesa, Maria Amalia es_ES
dc.contributor.author Alemano, Sergio es_ES
dc.contributor.author Vojnov, Adrian es_ES
dc.contributor.author Castagnaro, Atilio es_ES
dc.contributor.author Filippone, Maria Paula es_ES
dc.contributor.author Gmitter, Jr.F. es_ES
dc.contributor.author Gadea Vacas, José es_ES
dc.contributor.author Marano, Maria Rosa es_ES
dc.date.accessioned 2020-07-25T03:31:15Z
dc.date.available 2020-07-25T03:31:15Z
dc.date.issued 2017-12 es_ES
dc.identifier.issn 1464-6722 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148681
dc.description.abstract [EN] Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri A(T), that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri A(T) was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri A(T) triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri A(T) and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease. es_ES
dc.description.sponsorship This work was principally supported by the Agencia Nacional de Promocion Cientifica y Tecnologica (PICT-2011-1833) to M.R.M. and by a grant from the Florida Citrus Research and Development Foundation to F.G.G. and M.R.M. M.A.C., A.A.V., A.P.C., M.P.F. and M.R.M. are Career Investigators of the Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Molecular Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Autophagy es_ES
dc.subject Biofilm formation es_ES
dc.subject Biological control es_ES
dc.subject Citrus canker resistance es_ES
dc.subject Hypersensitive response es_ES
dc.subject Salicylic acid es_ES
dc.subject Secondary metabolites es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/mpp.12489 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1833/AR/Estrategias Biotecnológicas para el manejo de la Cancrosis Bacteriana de los Cítricos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Roeschlin, R.; Favaro, MA.; Chiesa, MA.; Alemano, S.; Vojnov, A.; Castagnaro, A.; Filippone, MP.... (2017). Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. Molecular Plant Pathology. 18(9):1267-1281. https://doi.org/10.1111/mpp.12489 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/mpp.12489 es_ES
dc.description.upvformatpinicio 1267 es_ES
dc.description.upvformatpfin 1281 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 27647752 es_ES
dc.identifier.pmcid PMC6638218 es_ES
dc.relation.pasarela S\324209 es_ES
dc.contributor.funder Citrus Research and Development Foundation es_ES
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.description.references Álvarez, C., García, I., Moreno, I., Pérez-Pérez, M. E., Crespo, J. L., Romero, L. C., & Gotor, C. (2012). Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis. The Plant Cell, 24(11), 4621-4634. doi:10.1105/tpc.112.105403 es_ES
dc.description.references Bethke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., & Glazebrook, J. (2013). Arabidopsis PECTIN METHYLESTERASEs Contribute to Immunity against Pseudomonas syringae. Plant Physiology, 164(2), 1093-1107. doi:10.1104/pp.113.227637 es_ES
dc.description.references BILGIN, D. D., ZAVALA, J. A., ZHU, J., CLOUGH, S. J., ORT, D. R., & DeLUCIA, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33(10), 1597-1613. doi:10.1111/j.1365-3040.2010.02167.x es_ES
dc.description.references Castillo, P., Escalante, M., Gallardo, M., Alemano, S., & Abdala, G. (2013). Effects of bacterial single inoculation and co-inoculation on growth and phytohormone production of sunflower seedlings under water stress. Acta Physiologiae Plantarum, 35(7), 2299-2309. doi:10.1007/s11738-013-1267-0 es_ES
dc.description.references CERNADAS, R. A., CAMILLO, L. R., & BENEDETTI, C. E. (2008). Transcriptional analysis of the sweet orange interaction with the citrus canker pathogensXanthomonas axonopodispv.citriandXanthomonas axonopodispv.aurantifolii. Molecular Plant Pathology, 9(5), 609-631. doi:10.1111/j.1364-3703.2008.00486.x es_ES
dc.description.references Chen, P.-S., Wang, L.-Y., Chen, Y.-J., Tzeng, K.-C., Chang, S.-C., Chung, K.-R., & Lee, M.-H. (2012). Understanding cellular defence in kumquat and calamondin to citrus canker caused by Xanthomonas citri subsp. citri. Physiological and Molecular Plant Pathology, 79, 1-12. doi:10.1016/j.pmpp.2012.03.001 es_ES
dc.description.references Chi, Y. H., Paeng, S. K., Kim, M. J., Hwang, G. Y., Melencion, S. M. B., Oh, H. T., & Lee, S. Y. (2013). Redox-dependent functional switching of plant proteins accompanying with their structural changes. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00277 es_ES
dc.description.references Chiesa, M. A., Siciliano, M. F., Ornella, L., Roeschlin, R. A., Favaro, M. A., Delgado, N. P., … Marano, M. R. (2013). Characterization of a Variant of Xanthomonas citri subsp. citri that Triggers a Host-Specific Defense Response. Phytopathology®, 103(6), 555-564. doi:10.1094/phyto-11-12-0287-r es_ES
dc.description.references Deng, Z. N., Xu, L., Li, D. Z., Long, G. Y., Liu, L. P., Fang, F., & Shu, G. P. (2009). Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. citri). Plant Breeding, 129(3), 341-345. doi:10.1111/j.1439-0523.2009.01695.x es_ES
dc.description.references Van Doorn, W. G., Beers, E. P., Dangl, J. L., Franklin-Tong, V. E., Gallois, P., Hara-Nishimura, I., … Bozhkov, P. V. (2011). Morphological classification of plant cell deaths. Cell Death & Differentiation, 18(8), 1241-1246. doi:10.1038/cdd.2011.36 es_ES
dc.description.references Duan, Y. P., Castañeda, A., Zhao, G., Erdos, G., & Gabriel, D. W. (1999). Expression of a Single, Host-Specific, Bacterial Pathogenicity Gene in Plant Cells Elicits Division, Enlargement, and Cell Death. Molecular Plant-Microbe Interactions®, 12(6), 556-560. doi:10.1094/mpmi.1999.12.6.556 es_ES
dc.description.references Durgbanshi, A., Arbona, V., Pozo, O., Miersch, O., Sancho, J. V., & Gómez-Cadenas, A. (2005). Simultaneous Determination of Multiple Phytohormones in Plant Extracts by Liquid Chromatography−Electrospray Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 53(22), 8437-8442. doi:10.1021/jf050884b es_ES
dc.description.references Enrique, R., Siciliano, F., Favaro, M. A., Gerhardt, N., Roeschlin, R., Rigano, L., … Marano, M. R. (2010). Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant Biotechnology Journal, 9(3), 394-407. doi:10.1111/j.1467-7652.2010.00555.x es_ES
dc.description.references Escalon, A., Javegny, S., Vernière, C., Noël, L. D., Vital, K., Poussier, S., … Gagnevin, L. (2013). Variations in type III effector repertoires, pathological phenotypes and host range ofXanthomonas citripv.citripathotypes. Molecular Plant Pathology, 14(5), 483-496. doi:10.1111/mpp.12019 es_ES
dc.description.references Falcone Ferreyra, M. L., Rius, S., Emiliani, J., Pourcel, L., Feller, A., Morohashi, K., … Grotewold, E. (2010). Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal, 62(1), 77-91. doi:10.1111/j.1365-313x.2010.04133.x es_ES
dc.description.references Falcone Ferreyra, M. L., Emiliani, J., Rodriguez, E. J., Campos-Bermudez, V. A., Grotewold, E., & Casati, P. (2015). The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions. Plant Physiology, 169(2), 1090-1107. doi:10.1104/pp.15.00515 es_ES
dc.description.references Favaro, M. A., Micheloud, N. G., Roeschlin, R. A., Chiesa, M. A., Castagnaro, A. P., Vojnov, A. A., … Marano, M. R. (2014). Surface Barriers of Mandarin ‘Okitsu’ Leaves Make a Major Contribution to Canker Disease Resistance. Phytopathology®, 104(9), 970-976. doi:10.1094/phyto-10-13-0277-r es_ES
dc.description.references Febres, V. J., Khalaf, A., Gmitter, F. G., & Moore, G. A. (2012). EVALUATING GENE EXPRESSION RESPONSES OF CITRUS TO TWO TYPES OF DEFENSE INDUCERS USING A NEWLY DEVELOPED CITRUS AGILENT MICROARRAY. Acta Horticulturae, (929), 59-64. doi:10.17660/actahortic.2012.929.7 es_ES
dc.description.references Fu, X.-Z., Gong, X.-Q., Zhang, Y.-X., Wang, Y., & Liu, J.-H. (2012). Different Transcriptional Response to Xanthomonas citri subsp. citri between Kumquat and Sweet Orange with Contrasting Canker Tolerance. PLoS ONE, 7(7), e41790. doi:10.1371/journal.pone.0041790 es_ES
dc.description.references Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839-863. doi:10.1146/annurev-arplant-042811-105606 es_ES
dc.description.references Graham, J. H., Gottwald, T. R., Cubero, J., & Achor, D. S. (2003). Xanthomonas axonopodis pv. citri : factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5(1), 1-15. doi:10.1046/j.1364-3703.2004.00197.x es_ES
dc.description.references Hatsugai, N., Iwasaki, S., Tamura, K., Kondo, M., Fuji, K., Ogasawara, K., … Hara-Nishimura, I. (2009). A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes & Development, 23(21), 2496-2506. doi:10.1101/gad.1825209 es_ES
dc.description.references Hauck, P., Thilmony, R., & He, S. Y. (2003). APseudomonas syringaetype III effector suppresses cell wall-based extracellular defense in susceptibleArabidopsisplants. Proceedings of the National Academy of Sciences, 100(14), 8577-8582. doi:10.1073/pnas.1431173100 es_ES
dc.description.references Hernández-Blanco, C., Feng, D. X., Hu, J., Sánchez-Vallet, A., Deslandes, L., Llorente, F., … Molina, A. (2007). Impairment of Cellulose Synthases Required for Arabidopsis Secondary Cell Wall Formation Enhances Disease Resistance. The Plant Cell, 19(3), 890-903. doi:10.1105/tpc.106.048058 es_ES
dc.description.references Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D. I., Petersen, N. H. T., Mattsson, O., … Petersen, M. (2009). Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 137(4), 773-783. doi:10.1016/j.cell.2009.02.036 es_ES
dc.description.references Hofius, D., Munch, D., Bressendorff, S., Mundy, J., & Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death & Differentiation, 18(8), 1257-1262. doi:10.1038/cdd.2011.43 es_ES
dc.description.references Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 es_ES
dc.description.references Kabbage, M., Williams, B., & Dickman, M. B. (2013). Cell Death Control: The Interplay of Apoptosis and Autophagy in the Pathogenicity of Sclerotinia sclerotiorum. PLoS Pathogens, 9(4), e1003287. doi:10.1371/journal.ppat.1003287 es_ES
dc.description.references Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., … Zipfel, C. (2014). Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 54(1), 43-55. doi:10.1016/j.molcel.2014.02.021 es_ES
dc.description.references KARPIŃSKI, S., SZECHYŃSKA-HEBDA, M., WITUSZYŃSKA, W., & BURDIAK, P. (2012). Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell & Environment, 36(4), 736-744. doi:10.1111/pce.12018 es_ES
dc.description.references Kazan, K., & Lyons, R. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. The Plant Cell, 26(6), 2285-2309. doi:10.1105/tpc.114.125419 es_ES
dc.description.references Khalaf, A. A., Gmitter, F. G., Conesa, A., Dopazo, J., & Moore, G. A. (2011). Fortunella margarita Transcriptional Reprogramming Triggered by Xanthomonas citri subsp. citri. BMC Plant Biology, 11(1). doi:10.1186/1471-2229-11-159 es_ES
dc.description.references Koch, E., & Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 2(5), 437-445. doi:10.1105/tpc.2.5.437 es_ES
dc.description.references Lee, I. J., Kim, K. W., Hyun, J. W., Lee, Y. H., & Park, E. W. (2009). Comparative ultrastructure of nonwounded Mexican lime and Yuzu leaves infected with the citrus canker bacteriumXanthomonas citripv.citri. Microscopy Research and Technique, 72(7), 507-516. doi:10.1002/jemt.20707 es_ES
dc.description.references Lenz, H. D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., … Nürnberger, T. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. The Plant Journal, 66(5), 818-830. doi:10.1111/j.1365-313x.2011.04546.x es_ES
dc.description.references Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., & Dinesh-Kumar, S. P. (2005). Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell, 121(4), 567-577. doi:10.1016/j.cell.2005.03.007 es_ES
dc.description.references Liu, Y., Ren, D., Pike, S., Pallardy, S., Gassmann, W., & Zhang, S. (2007). Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. The Plant Journal, 51(6), 941-954. doi:10.1111/j.1365-313x.2007.03191.x es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references LUX, A., MORITA, S., ABE, J., & ITO, K. (2005). An Improved Method for Clearing and Staining Free-hand Sections and Whole-mount Samples*. Annals of Botany, 96(6), 989-996. doi:10.1093/aob/mci266 es_ES
dc.description.references Macho, A. P., & Zipfel, C. (2015). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14-22. doi:10.1016/j.mib.2014.10.009 es_ES
dc.description.references Mafra, V., Kubo, K. S., Alves-Ferreira, M., Ribeiro-Alves, M., Stuart, R. M., Boava, L. P., … Machado, M. A. (2012). Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions. PLoS ONE, 7(2), e31263. doi:10.1371/journal.pone.0031263 es_ES
dc.description.references Malamud, F., Torres, P. S., Roeschlin, R., Rigano, L. A., Enrique, R., Bonomi, H. R., … Vojnov, A. A. (2011). The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology, 157(3), 819-829. doi:10.1099/mic.0.044255-0 es_ES
dc.description.references Mammarella, N. D., Cheng, Z., Fu, Z. Q., Daudi, A., Bolwell, G. P., Dong, X., & Ausubel, F. M. (2015). Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae. Phytochemistry, 112, 110-121. doi:10.1016/j.phytochem.2014.07.010 es_ES
dc.description.references Marano, M. R., & Carrillo, N. (1992). Constitutive Transcription and Stable RNA Accumulation in Plastids during the Conversion of Chloroplasts to Chromoplasts in Ripening Tomato Fruits. Plant Physiology, 100(3), 1103-1113. doi:10.1104/pp.100.3.1103 es_ES
dc.description.references Martinez-Godoy, M. A., Mauri, N., Juarez, J., Marques, M. C., Santiago, J., Forment, J., & Gadea, J. (2008). A genome-wide 20 K citrus microarray for gene expression analysis. BMC Genomics, 9(1), 318. doi:10.1186/1471-2164-9-318 es_ES
dc.description.references Mazza, C. A., Boccalandro, H. E., Giordano, C. V., Battista, D., Scopel, A. L., & Ballaré, C. L. (2000). Functional Significance and Induction by Solar Radiation of Ultraviolet-Absorbing Sunscreens in Field-Grown Soybean Crops. Plant Physiology, 122(1), 117-126. doi:10.1104/pp.122.1.117 es_ES
dc.description.references Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., … Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388 es_ES
dc.description.references Pourcel, L., Irani, N. G., Koo, A. J. K., Bohorquez-Restrepo, A., Howe, G. A., & Grotewold, E. (2013). A chemical complementation approach reveals genes and interactions of flavonoids with other pathways. The Plant Journal, 74(3), 383-397. doi:10.1111/tpj.12129 es_ES
dc.description.references Rigano, L. A., Siciliano, F., Enrique, R., Sendín, L., Filippone, P., Torres, P. S., … Marano, M. R. (2007). Biofilm Formation, Epiphytic Fitness, and Canker Development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions®, 20(10), 1222-1230. doi:10.1094/mpmi-20-10-1222 es_ES
dc.description.references Rojo, E., Martı́n, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., … Raikhel, N. V. (2004). VPEγ Exhibits a Caspase-like Activity that Contributes to Defense against Pathogens. Current Biology, 14(21), 1897-1906. doi:10.1016/j.cub.2004.09.056 es_ES
dc.description.references RYBAK, M., MINSAVAGE, G. V., STALL, R. E., & JONES, J. B. (2009). Identification ofXanthomonas citrissp.citrihost specificity genes in a heterologous expression host. Molecular Plant Pathology, 10(2), 249-262. doi:10.1111/j.1364-3703.2008.00528.x es_ES
dc.description.references Schaad, N. W., Postnikova, E., Lacy, G., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2006). Emended classification of xanthomonad pathogens on citrus. Systematic and Applied Microbiology, 29(8), 690-695. doi:10.1016/j.syapm.2006.08.001 es_ES
dc.description.references Schaad, N. W., Postnikova, E., Lacy, G. H., Sechler, A., Agarkova, I., Stromberg, P. E., … Vidaver, A. K. (2005). Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1915) Dye 1978 forms A, B/C/D, and E as X. smithii subsp. citri (ex Hasse) sp. nov. nom. rev. comb. nov., X. fuscans subsp. aurantifolii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citrumelo (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv malvacearum (ex Smith 1901) Dye 1978 as X. smithii subsp. smithii nov. comb. nov. nom. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1935) Dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and «var. fuscans» of X. campestris pv. phaseoli (ex Smith, 1987) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Systematic and Applied Microbiology, 28(6), 494-518. doi:10.1016/j.syapm.2005.03.017 es_ES
dc.description.references Seay, M., & Dinesh-Kumar, S. P. (2005). Life After Death: Are Autophagy Genes Involved in Cell Death and Survival During Plant Innate Immune Responses? Autophagy, 1(3), 185-186. doi:10.4161/auto.1.3.2080 es_ES
dc.description.references Shapiguzov, A., Vainonen, J. P., Wrzaczek, M., & Kangasjärvi, J. (2012). ROS-talk – how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00292 es_ES
dc.description.references Shiotani, H., Fujikawa, T., Ishihara, H., Tsuyumu, S., & Ozaki, K. (2007). A pthA Homolog from Xanthomonas axonopodis pv. citri Responsible for Host-Specific Suppression of Virulence. Journal of Bacteriology, 189(8), 3271-3279. doi:10.1128/jb.01790-06 es_ES
dc.description.references Soprano, A. S., Abe, V. Y., Smetana, J. H. C., & Benedetti, C. E. (2013). Citrus MAF1, a Repressor of RNA Polymerase III, Binds the Xanthomonas citri Canker Elicitor PthA4 and Suppresses Citrus Canker Development. Plant Physiology, 163(1), 232-242. doi:10.1104/pp.113.224642 es_ES
dc.description.references Sun, X., Stall, R. E., Jones, J. B., Cubero, J., Gottwald, T. R., Graham, J. H., … Sutton, B. D. (2004). Detection and Characterization of a New Strain of Citrus Canker Bacteria from Key/Mexican Lime and Alemow in South Florida. Plant Disease, 88(11), 1179-1188. doi:10.1094/pdis.2004.88.11.1179 es_ES
dc.description.references Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 es_ES
dc.description.references Teh, O.-K., & Hofius, D. (2014). Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. Journal of Experimental Botany, 65(5), 1297-1312. doi:10.1093/jxb/ert441 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Vanholme, R., Storme, V., Vanholme, B., Sundin, L., Christensen, J. H., Goeminne, G., … Boerjan, W. (2012). A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis. The Plant Cell, 24(9), 3506-3529. doi:10.1105/tpc.112.102574 es_ES
dc.description.references Vernière, C., Hartung, J. S., Pruvost, O. P., Civerolo, E. L., Alvarez, A. M., Maestri, P., & Luisetti, J. (1998). European Journal of Plant Pathology, 104(5), 477-487. doi:10.1023/a:1008676508688 es_ES
dc.description.references Voigt, C. A. (2014). Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00168 es_ES
dc.description.references Vojnov, A. A., Morais do Amaral, A., Dow, J. M., Castagnaro, A. P., & Marano, M. R. (2010). Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host. Applied Microbiology and Biotechnology, 87(2), 467-477. doi:10.1007/s00253-010-2631-2 es_ES
dc.description.references Wrzaczek, M., Brosché, M., & Kangasjärvi, J. (2013). ROS signaling loops — production, perception, regulation. Current Opinion in Plant Biology, 16(5), 575-582. doi:10.1016/j.pbi.2013.07.002 es_ES
dc.description.references Xia, P., Wang, S., Du, Y., Zhao, Z., Shi, L., Sun, L., … Fan, Z. (2013). WASH inhibits autophagy through suppression of Beclin 1 ubiquitination. The EMBO Journal, 32(20), 2685-2696. doi:10.1038/emboj.2013.189 es_ES
dc.description.references Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., & Ohsumi, Y. (2004). Processing of ATG8s, Ubiquitin-Like Proteins, and Their Deconjugation by ATG4s Are Essential for Plant Autophagy. The Plant Cell, 16(11), 2967-2983. doi:10.1105/tpc.104.025395 es_ES
dc.description.references Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., … Shirasu, K. (2009). Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in Arabidopsis. The Plant Cell, 21(9), 2914-2927. doi:10.1105/tpc.109.068635 es_ES
dc.description.references Yun, M. H., Torres, P. S., Oirdi, M. E., Rigano, L. A., Gonzalez-Lamothe, R., Marano, M. R., … Vojnov, A. A. (2006). Xanthan Induces Plant Susceptibility by Suppressing Callose Deposition. Plant Physiology, 141(1), 178-187. doi:10.1104/pp.105.074542 es_ES
dc.description.references Zhou, J., Yu, J.-Q., & Chen, Z. (2014). The perplexing role of autophagy in plant innate immune responses. Molecular Plant Pathology, 15(6), 637-645. doi:10.1111/mpp.12118 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem