- -

Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Emam, Ahmed Mostafa es_ES
dc.contributor.author Afonso, Sandra es_ES
dc.contributor.author González-Redondo, Pedro es_ES
dc.contributor.author Mehaisen, G.M.K. es_ES
dc.contributor.author Azoz, A.A.A. es_ES
dc.contributor.author Ahmed, N.A. es_ES
dc.contributor.author Fernand, N. es_ES
dc.date.accessioned 2020-07-27T07:32:49Z
dc.date.available 2020-07-27T07:32:49Z
dc.date.issued 2020-06-30
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/148724
dc.description.abstract [EN] Mitochondrial DNA (mtDNA) and cytochrome b (cyt b) gene sequences were used to determine the status of genetic diversity and phylogeny for 132 individuals from local rabbit breeds in Egypt and Spain. The Egyptian local rabbit breeds were Egyptian Red Baladi (ERB), Egyptian Black Baladi (EBB) and Egyptian Gabali Sinai (EGS). However, the Spanish local rabbit breed was Spanish common rabbit (SCR). Previous breeds were compared with European Wild Rabbit taken from Albacete, Spain (EWR). A total of 353 mutations, 290 polymorphic sites, 14 haplotypes, 0.06126 haplotype diversity and –1.900 (P<0.05) for Tajima’s D were defined in this study. Haplotype A mostly occurred in 83.3% of Egyptian rabbits and 11.7 % of EWR, while haplotype B occurred in 63.8% of Spanish rabbits and 36.2% of the EGS breed. A total of 47 domestic and wild Oryctolagus cuniculus published sequences were used to investigate the origin and relation among the rabbit breeds tested in this study. The most common haplotype (A) was combined with 44.7% of published sequences. However, haplotype B was combined with 8.5%. Haplotypes of Egyptian, SCR and EWR were scattered in cluster 1, while we found only one EGS haplotype with two haplotypes of EWR in cluster 2. Our results assumed that genetic diversity for ERB, EBB and SCR was very low. Egyptian breeds and SCR were introduced from European rabbits. We found that ERB and EBB belong to one breed. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Egyptian rabbits es_ES
dc.subject Spanish common rabbit es_ES
dc.subject Genetic diversity es_ES
dc.subject Mitochondrial DNA es_ES
dc.title Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2020.12219
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Emam, AM.; Afonso, S.; González-Redondo, P.; Mehaisen, G.; Azoz, A.; Ahmed, N.; Fernand, N. (2020). Status and origin of Egyptian local rabbits in comparison with Spanish common rabbits using mitochondrial DNA sequence analysis. World Rabbit Science. 28(2):93-102. https://doi.org/10.4995/wrs.2020.12219 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2020.12219 es_ES
dc.description.upvformatpinicio 93 es_ES
dc.description.upvformatpfin 102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\12219 es_ES
dc.description.references Abrantes J., Areal H., Esteves P.J. 2013. Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3(TLR3) in wild populations and domestic breeds. BMC Genet., 14: 73. https://doi.org/10.1186/1471-2156-14-73 es_ES
dc.description.references Achilli A., Olivieri A., Pellecchia M., Uboldi C., Colli L., Al-Zahery N., Accetturo M., Pala M., Kashani B.H., Perego U.A., Battaglia V., Fornarino S., Kalamati J., Houshmand M., Negrini R., Semino O., Richards M., Macaulay V., Ferretti L., Bandelt H.J., Ajmone-Marsan P., Torroni A. 2008. Mitochondrial genomes of extinct aurochs survive in domestic cattle. Curr. Biol., 18: R157-R158. https://doi.org/10.1016/j.cub.2008.01.019 es_ES
dc.description.references Alves J.M., Carneiro, M., Afonso S., Lopes S., Garreau H., Boucher S., Allian D., Queney G., Esteves P.J., Bolet J. and Ferrnand N. 2015. Levels and patterns of genetic diversity and population structure in domestic rabbits. PLoS One 10 (12): e0144687. https://doi.org/10.1371/journal.pone.0144687 es_ES
dc.description.references Bolet G., Brun J.M., Monnerot M., Abeni F., Arnal C., Arnold J., Bell D., Bergoglio G., Besenfelder U., Bosze S., Boucher S., Chanteloup N., Ducourouble M.C., Durand-Tardif M., Esteves P.J., Ferrand N., Gautier A., Haas C., Hewitt G., Jehl N., Joly T., Koehl P.F., Laube T., Lechevestrier S., Lopez M., Masoero G., Menigoz J.J., Piccinin R., Queney G., Saleil G., Surridge A., Van Der Loo W., Vicente J.S., Viudes De Castro M.P., Virag G., Zimmermann, J.M. 2000. Evaluation and conservation of European rabbit (Oryctolagus cuniculus) genetic resources. First results and inferences. In Proc.: 7th World Rabbit Congress, 4-7 July 2000, Valencia, Spain, pp. 281-315. es_ES
dc.description.references Bollback J.P., Huelsenbeck J.P. 2007. Clonal interference is alleviated by high mutation rates in large populations. Mol. Biol. Evol., 24: 1397-1406. https://doi.org/10.1093/molbev/msm056 es_ES
dc.description.references Bortoluzzi C., Bosse M., Derks M.F.L., Crooijmans R., Groenen M.A.M, Megens H.J. 2019. The type of bottleneck matters: Insights into the deleterious variation landscape of small managed populations. Evol Appl., 13: 330-341. https://doi.org/10.1111/eva.12872. es_ES
dc.description.references Brook B.W. 2008. Demographics versus genetics in conservation biology. In: Carrol, S.P. and Fox, C.W. (eds). Conservation Biology: Evolution in Action. Oxford University Press: USA. 35-49. es_ES
dc.description.references Campos, R., Storz, J.F., Ferrand, N. 2012. Copy number polymorphism in the α-globin gene cluster of European rabbit (Oryctolagus cuniculus). Heredity, 108: 531-536. https://doi.org/10.1038/hdy.2011.118 es_ES
dc.description.references Carneiro M., Afonso S., Geraldes A., Garreau H., Bolet G., Boucher S., Tircazes A., Queney G., Nachman M.W., Ferrand N. 2011. The genetic structure of domestic rabbits. Mol. Biol. Evol., 28: 1801-1816. https://doi.org/10.1093/molbev/msr003 es_ES
dc.description.references Carneiro M., Albert F.W., Melo-Ferreira J., Galtier N., Gayral P., Blanco-Aguiar J.A., Villafuerte R., Nachman N.M., Ferrand N. 2012. Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome. Mol. Biol. Evol., 29: 1837-1849. https://doi.org/10.1093/molbev/mss025 es_ES
dc.description.references Christensen N.D., Peng X. 2012. Rabbit genetic and transgenic model. In: The Laboratory Rabbit, Guinea pig, Hamster and other Rodents (Eds. Suckow, M.A., Stevens, K.A. and Wilson, R.P). Elsevier, USA, pp. 165-194. https://doi.org/10.1016/B978-0-12-380920-9.00007-9 es_ES
dc.description.references Christodoulakis M., Golding G.B., Iliopoulos C.S., Pinzón Ardila Y.J., Smyth W.F. 2007. Efficient algorithms for counting and reporting segregating sites in genomic sequences. J. Comput. Biol., 14: 1001-1010. https://doi.org/10.1089/cmb.2006.0136 es_ES
dc.description.references Emam A.M., Afonso, S., Azoz, A., Mehaisen, G.M.K., Gonzalez, P.; Ahmed, N.A., Ferrnand N. 2016. Microsatellite polymorphism in some Egyptian and Spanish common rabbit breeds. In Proc.: 11th World Rabbit Congress, 15-18 June 2016, Qingdao, China. pp: 31-34. es_ES
dc.description.references Emam A.M., Azoz A., Mehaisen G.M.K., Ferrnand N., Ahmed N.A. 2017. Diversity assessment among native middle Egypt rabbit populations in North upper- Egypt province by microsatellite polymorphism. World Rabbit Sci., 25: 9-16. https://doi.org/10.4995/wrs.2017.5298 es_ES
dc.description.references Ennafaa H., Monnerot M., Gaaied A.E., Mounolou J.C. 1987. Rabbit mitochondrial DNA: preliminary comparison between some domestic and wild animals. Genet. Select. Evol.,19:279-288. https://doi.org/10.1186/1297-9686-19-3-279 es_ES
dc.description.references FAO. 2007. Global plan of action for animal genetic resources and the Interlaken declaration. Available at http://www.fao.org/docrep/010/a1404e/a1404e00.htm. Accessed August 2019. es_ES
dc.description.references FAO. 2011. Animal production and health guidelines (9), Molecular genetic characterization of animal genetic resources, Commission on genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations. Rome. es_ES
dc.description.references Fu Y.X., Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics,133: 693-709. es_ES
dc.description.references Fuller S.J., Wilson, J.C., Mather P.B. 1997. Patterns of differentiation among wild rabbit populations Oryctolagus Cuniculus L. in arid and semiarid ecosystems of North-Eastern Australia. Mol. Eco., 6: 145-153. https://doi.org/10.1046/j.1365-294X.1997.00167.x es_ES
dc.description.references Gaggiotti O.E. 2003. Genetic threats to population persistence. Ann. Zool. Fennici, 40: 155-168. Galal E.S.E., Khalil M.H. 1994. Development of rabbit industry in Egypt. Cahiers Options Méditerranéennes, 8: 43-56. es_ES
dc.description.references Geraldes A., Ferrand N., Nachman M.W. 2006. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics, 173, 919-933. https://doi.org/10.1534/genetics.105.054106 es_ES
dc.description.references Ghalayini M, Launay A, BridierNahmias A, Clermont O, Denamur E, Lescat M, Tenaillon O. 2018. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol., 84: e02377-17. https://doi.org/10.1128/AEM.02377-17 es_ES
dc.description.references González-Redondo P. 2007. Estado de las poblaciones y posibilidades de recuperación del conejo doméstico común Español. In Proc.: IV Jornadas Ibéricas de Razas Autóctonas y sus Productos Tradicionales: Innovación, Seguridad y Cultura Alimentarias. Seville (Spain), pp. 367-372. es_ES
dc.description.references Grimal A., Safaa H.M., Saenz-de-Juano M.D., Viudes-de-Castro M.P., Mehaisen G.M.K., Elsayed D.A.A., Lavara R., Marco Jiménez F., Vicente J.S. 2012. Phylogenetic relationship among four Egyptian and one Spanish rabbit populations based on microsatellite markers. In Proc.: 10th World Rabbit Congress, 3-6 September, 2012, Sharm El-Sheikh, Egypt, pp. 177-181. es_ES
dc.description.references Guo H., Jiao Y., Tan X., Wang X., Huang X., Huizhe X., Jin H. and. Paterson, A.H. 2019. Gene duplication and genetic innovation in cereal genomes. Genome Res. 29: 261-269. https://doi.org/10.1101/gr.237511.118 es_ES
dc.description.references Guo H., Jiao Y., Tan X., Wang X., Huang X., Jin H., Paterson A.H. Gene duplication and genetic innovation in cereal genomes. Genome Res., 29: 261-269. es_ES
dc.description.references Gupta A., Bhardwaj A., Supriya, Sharma P., Pal Y., Kumar S. 2015. Mitochondrial DNA- a Tool for Phylogenetic and Biodiversity Search in Equines. J. Biodivers Endanger Species, S1: 006. https://doi.org/10.4172/2332-2543.S1-006 es_ES
dc.description.references Hall S.J.G. 2004. Livestock biodiversity: genetic resources for the farming of the future. Blackwell Science Ltd. Oxford, United Kingdom. 280 pp. https://doi.org/10.1002/9780470995433 es_ES
dc.description.references Jayaraman R. 2011. Hypermutation and stress adaptation in bacteria. J. Genet., 90: 383-391. https://doi.org/10.1007/s12041-011-0086-6 es_ES
dc.description.references Kekkonen J., Brommer J.E. 2014. Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals. Available at http://www.currentzoology.org/site_media/onlinefirst/downloadable_file/2014/12/01/Kekkonen.pdf. Accessed January 2015. es_ES
dc.description.references Khalil M.H. 2002. The Baladi Rabbits (Egypt). In: Rabbit genetic resources in Mediterranean Countries. Eds. M. H. Khalil and M. Baselga. Options Mediterranéennes Serie B, 38: 39-50. es_ES
dc.description.references Kim J.H., Byun M.J., Kim M.J., Suh S.W., Ko Y.G., Lee C.W., Jung K.S., Kim E.S., Yu D.J., Kim W.Y., Choi S.B. 2013. MtDNA diversity and phylogenetic state of Korean cattle breed, Chikso. Asian-Australas. J. Anim. Sci., 26: 163-170. https://doi.org/10.5713/ajas.2012.12499 es_ES
dc.description.references Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187 es_ES
dc.description.references Long J.R., Qiu X.P., Zeng F.T., Tang L.M., Zhang Y.P. 2003. Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis. Anim. Genet., 34: 82-87. https://doi.org/10.1046/j.1365-2052.2003.00945.x es_ES
dc.description.references Martin-Burriel, I., Marcos, S., Osta R., García-Muro, E., Zaragoza, P. 1996. Genetic characteristics and distances amongst Spanish and French rabbit population. World Rabbit Sci., 4: 121-126. https://doi.org/10.4995/wrs.1996.282 es_ES
dc.description.references Ministry of Agriculture and Land Reclamation in Egypt, FAO (2003). First Report on the state of animal Genetic Resources in the Arab Republic of Egypt. FAO, Rome, pp. 23. es_ES
dc.description.references Monnerot M., Vigne J.D., Biju-Duval C., Casane D., Callou C., Hardy C., Mougel F., Soriguer R., Dennebouy N., Mounolou J. (1994) Rabbit and man: genetic and historic approach. Genet. Select. Evol., 26: 167s-182s. https://doi.org/10.1186/1297-9686-26-S1-S167 es_ES
dc.description.references Mougel F., Gautier A, Queney G., Sanchez M., Dennebouy N., Monnerot M. 2002. History of European rabbit populations in France: advantage and disadvantage of mtDNA. Available at https://www.ncbi.nlm.nih.gov/nuccore/AJ535802 Accessed August 2019. es_ES
dc.description.references Nguyen N., Brajkovic V., Cubric-Curik V., Ristov S., Veir Z., Szendrő Z., Nagy I., Curik, I. 2018. Analysis of the impact of cytoplasmic and mitochondrial inheritance on litter size and carcass in rabbits. World Rabbit Science, 26: 287-298. https://doi.org/10.4995/wrs.2018.7644 es_ES
dc.description.references Owuor S.A., Mamati E.G., Kasili R.W. 2019. Origin, Genetic Diversity, and Population Structure of Rabbits (Oryctolagus cuniculus) in Kenya. BioMed. Res. Internat., 2019: 7056940. https://doi.org/10.1155/2019/7056940 es_ES
dc.description.references Park G., Pichugin Y., Huang W., Traulsen A. 2019. Population size changes and extinction risk of populations driven by mutant interactors. Phys. Rev., E 99, 022305. https://doi.org/10.1103/PhysRevE.99.022305 es_ES
dc.description.references Peischl S., Excoffier L. 2015. Expansion load: recessive mutations and the role of standing genetic variation. Mol. Ecol., 24: 2084-2094. https://doi.org/10.1111/mec.13154 es_ES
dc.description.references Sakthivel M., Tamilmani G., Abdul Nazar A.K., Jayakumar R., Sankar M., Rameshkumar P., Anikuttan K.K., Samal A.K., Anbarasu M., Gopakumar G. 2018. Genetic variability of a small captive population of the cobia (Rachycentron canadum) through pedigree analyses. Aquaculture, 498: 435-443. https://doi.org/10.1016/j.aquaculture.2018.08.047 es_ES
dc.description.references Schmidt D., Pool J. 2002. The effect of population history on the distribution of Tajima's D statistics. Available at http://www.cam.cornell.edu/~deena/TajimasD.pdf. Accessed March 2019. es_ES
dc.description.references Schumer M., Xu C., Powell D.L., Durvasula A., Skov L., Holland C., Blazier J.C., Sankararaman S., Andolfatto P., Rosenthal G.G., Przeworski M. 2018. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science, 360: 656-660 https://doi.org/10.1126/science.aar3684 es_ES
dc.description.references Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197 es_ES
dc.description.references Valvo M., Russo R., Mancuso F.P. 2017. mtDNA diversity in a rabbit population from Sicily (Italy). Turk. J. Zool. 41: 645-653. https://doi.org/10.3906/zoo-1511-53 es_ES
dc.description.references van der Loo W., Mougel F., Sanchez M.S., Bouton C., Castien E., Soriguer R., Hamers R., Monnerot M. 1997. Evolutionary patterns at the antibody constant region in rabbit (Oryctolagus cuniculus): characterization of endemic b-locus haplotypes and their frequency correlation with major mitochondrial gene types in Spain. Gibier Faune Sauvage, 14: 427-449. es_ES
dc.description.references Wares J.P. 2010. Natural distributions of mitochondrial sequence diversity support new null hypotheses. Evolution 64: 1136-1142. https://doi.org/10.1111/j.1558-5646.2009.00870.x es_ES
dc.description.references Watson J.P.N., Davis S.J.M. 2019. Shape differences in the pelvis of the rabbit, Oryctolagus cuniculus (L.), and their genetic associations. Available at https://hal.archives-ouvertes.fr/hal-01918838v2 Accessed March 2019. es_ES
dc.description.references Yu Yeh S., Hsuan Song C., Llu-lin T., Chung Chou C. 2019. The effects of crossbreeding, age, and sex on erythrocyte indices and biochemical variables in crossbred pet rabbits (Oryctolagus cuniculus). Vet. Clin. Pathol., 48: 469-480. https://doi.org/10.1111/vcp.12775 es_ES
dc.description.references Zaragoza P., Arana A., Zaragoza I., Amorena B. 1987. Blood biochemical polymorphisms in rabbits presently bred in Spain: Genetic variation and distances amongst populations. Aust. J. Biol. Sci., 40: 275-286. https://doi.org/10.1071/BI9870275 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem